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1 Introduction

We know empirically that overparameterized DNNs trained via SGD generalize well. Uniform
convergence (UC) tries to explain generalization by bounding the worst case generalization gap over
a set of hypotheses H, based on some complexity measure of H. Given 0 ≤ δ ≤ 1, the basic form of
the UC bound is the smallest ϵ such that

PS∼Dn

(
sup
h∈H

|L̂S(h)− L(h)| ≤ ϵ

)
≥ 1− δ,

where the S are samples of size n from the data distribution D, L̂S(h) is the empirical loss of an
hypothesis h on sample S, and L(h) is the population loss.

Due to the overparameterization of DNNs used in practice, these bounds are typically vacuous when
applied to the class of DNNs directly, and so a common approach is to try to restrict the class H,
e.g. by restricting the weight norm. However, [NK19] (roughly) shows this approach won’t work
in general, by constructing a data distributions D where UC bounds will fail even when H = {only
those NNs learned by SGD on D}. In addition, it has been observed that CNNs can be trained to
interpolate random labels on CIFAR-10 [ZBH+21], meaning that UC bounds also can’t hold when
H = {CNNs learned by SGD on CIFAR-10 with corrupted loss}. 1

A natural question is whether there are assumptions on data distributions under which UC bounds
will succeed, and whether such assumptions hold for the datasets we encounter in practice. It is
unclear if the “adversarial spheres" of [NK19] are indicative of a phenomena which occurs in real
data. [BMDH21], for example, argues that the failure may not occur in real datasets which have
angular (rather than only radial) structure.

2 Proposed approach

In this project we attempt to assess whether UC bounds could even work given the best-possible
data assumptions: would UC bounds hold if D was a real data distribution, say MNIST? We don’t
have access to the “true" MNIST population distribution but we can approximating it by combining
MNIST train and test sets to make D̂ and resampling i.i.d. training sets S ∼ D̂n.

Denote by hS the hypothesis (DNN) learned by SGD on sample S. From now on, we consider
accuracy in place of loss and denote the accuracy of h on sample S by Acc(h, S), and the population
accuracy of h by Acc(h). We’d like to answer the following:

1Actually this shows that UC bounds will fail when the loss L in the bound is itself the corrupted loss. We
also expect, though have not verified empirically, that models could be trained to interpolate any training set S
with the correct labels, while simultaneously optimizing incorrect labels on examples outside of S, ensuring
poor generalization error w.r.t. the original loss.
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Q: For most samples S, is there a different sample S′ on which SGD learns hypoth-
esis hS′ , such that hS′ generalizes well (i.e. Acc(hS′) is high) but Acc(hS′ , S) is
low?2

If this were true then this would imply that3

PS∼Dn

(
sup
h∈H

|Acc(h, S)−Acc(h)| ≤ ϵ

)
≤ PS∼Dn (Acc(h, S)−Acc(h) ≤ ϵ) ≪ 1.

Finding such an hS′ for arbitrary S would be challenging, especially noting that we wish to only
consider h ∈ H which are trained to minimize the natural loss function. (Otherwise, we could
explicitly maximizing the loss on S′). Instead, we will try to assess the existence of such hS′

indirectly.

Toy models of classifier performance The the empirical MNIST distribution D̂ is the discrete
uniform distribution over the 70k train and test images. Fix a network architecture and training
hyperparameters. There is an induced distribution over classifiers h, obtained by training classifiers
on random samples S ∼ D̂n (in our experiments n = 200), with additional randomness coming from
the initialization and training order.

We will be concerned with the whether each of the 70k examples are classified correctly or incorrectly
by a given classifier. For each example xj we associate a Bernoulli rv cj indicating if it is classified
correctly. The distribution of each cj is induced by the distribution over trained classifiers. Training a
classifier and evaluating it on the 70k xj results in a sample of all the cj . Denote by pj the probability
of xj being classified incorrectly, that is pj := P(cj = 0), which we refer to as the difficulty of xj .

Let’s consider two “extreme-case" mental models of how the cj could be distributed:

1a) The cj are mutually independent. That is, the probability that a classifier minclassifies an
entire sample set S is

P

 ⋂
xj∈S

cj = 0

 =
∏
xj∈S

P (cj = 0) =
∏
xj∈S

pj .

2a) The cj are ordered based on difficulty, so that cj ⇒ ck for all k such that pj ≥ pk. So a
classifier always correctly classifies only the m least difficult examples for some m ≤ 70k.

We also describe two (of many possible) “less extreme" version of the above:

1b) The cj are mutually independent except for some set of ≪ 70k examples which are perfectly
correlated, aka equal.

2b) Each classifier falls into one of k bins, and each bin assigns a different sequence of difficulties
pk1 ≤ pk2 . . . to the examples, from which the classifier correctly classifies the m easiest.

Implications To show that UC bound will fail, it would suffice that both a) the set H of h generated
as above all have high generalization accuracy, and b) for all (or most) S ∼ Dn, H contains an h
with Acc(h, S) = 0. Another way to say condition b) is

PS∼Dn

(
Ph∼H

[
Acc(h, S) = 0

]
> 0

)
≪ 1,

where h ∼ H means h distributed according to the induced distribution.

Assume model 1a, and additionally assume that pj > 0 for all j, that is, every example is misclassified
by some classifier in H. Then for all S

Ph∼H
[
Acc(h, S) = 0

]
=

∏
xj∈S

pj > 0,

2In future work, it would be good to understand the feasibility of the other direction, where Acc(hS′) is low
but Acc(hS′ , S) is high.

3Note that this is not technically a failure of the tightest possible UC bound in terms of restriction on H, since
that requires showing that for any set of samples Sδ with PS∼Dn(Sδ) ≥ 1− δ, the there is a bad hypotheses
h ∈ Hδ = {only samples S ∈ Sδ itself}. We defer this to future work.
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so UC bounds must fail. On the other hand, assuming model 2a, then for any S such that xj ∈ S and
xk /∈ S and pj ≥ pk, there is no h ∈ H with Acc(h, S) = 0, so a UC bound could succeed.

3 Empirical analysis

In order to assess the extent to which the above models comport with reality, we conduct the following
experiment: we sample 2641 training sets of size n = 200 from the 70k combined MNIST train and
test examples, and on each we train a 1.2M parameter CNN until reaching perfect train accuracy.4
Despite the tiny training set size, the models obtain nontrivial generalization accuracy of around 87%
measured on the full 70k examples.

Basic characteristics It is convenient to picture this data as a 2461×70k table T with each row i
corresponding to a classifier hi and each column j corresponding to an example xj , and Tij = 1 if
hi classifies xj correctly, 0 else. Then the mean of each row i is the accuracy of classifier hi, and
the mean of each column j is an estimate of 1 − pj , the “easiness" of example xj . Call this table
T real. Using the estimated pj we also generate synthetic versions T 1a and T 2a, corresponding to the
two toy models above. Each row i of T 1a is generated by sampling each T 1a

ij independently with
probability 1 − pj , and each row i of T 2a is generated by first sampling qi ∼ Unif(0, 1) and then
setting T 1a

ij = 1 whenever pj < qi.

By design, all three table have the same mean classifier performance, i.e. the same mean row mean
(which is equal to the mean column mean), of ∼87.4%. Also by design, the difficulty pj of each
example (1 - column means) are the same. The distribution of example difficulty is is shown in figure
(1a). By contrast, the distribution of the classifier performance, shown in figures (1b) and (1c), is
very different in each case. Neither model fits the real data well: the real and model-1a histograms
are approximately symmetric but model-1a has much lower variance, while model 2a is qualitatively
very different.

(a) histogram of example difficulty
(same for real data and models)

(b) histograms of classifier general-
ization accuracy

(c) same as (b), showing only real
data and model 1a

Figure 1: Marginal distributions of the classifier data (blue: real data; orange: synthetic model 1a;
green: synthetic model 2a)

A prerequisite for model 1a is that every example is misclassifed by some h. We don’t see this in our
sample of classifiers: 8139 examples are always classified correctly. But in figure (2a) we plot how
the total number of examples misclassified by some h grows as our set of h grows, which gives some
indication that this fraction will approach one. Figure (2a) also plots the same growth for the synthetic
data, which is notably less smooth for model 2a. Figure (2b) shows the growth of the number of
unique “classification patterns" (i.e. unique columns of T ) as we consider more classifiers. Equal
columns indicates perfect correlation of two of the cj , which would break the assumptions of model
1a. The number of unique classification patterns grows much more slowly under model 2a than for
the others.

Some statistics While we don’t observer perfect independence of the cj , we do see that the typical
pairwise correlation ρ is very small for real data and under model 1a, but not under model 2a. Figures

4Details: Adadelta for 30 epochs; lr=1.0; batch size=64. These hyperparameters should be explored in future
work. Beyond the random training set, there is additional randomness over the weight initialization and training
batch order. Also, for computational expediency, the models are not trained to zero training loss, which should
be explored further.
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(a) total # of examples misclassified by at least
one h as the number of h increases

(b) # of unique classification patterns as the num-
ber of h increases

Figure 2: As we consider more classifiers, the fraction of misclassified examples and examples with
unique classification patterns may be approaching 1 for real classifiers and synthetic model 1a, with
notably different behaviour for model 2a.

(3a) and (3b) show the distribution of correlation coefficients between all pairs of (ci, cj) for a sample
of 1000 examples, for real classifiers and both models 1a and 2a. Figure (3c) shows the p-values for
standard chi-square tests between pairs of examples.5

(a) histogram of correlation coeffi-
cients ρ between the cj for pairs of
examples

(b) same as (a) but omitting model
2a

(c) histogram of p-values for chi-
square independence tests between
pairs of cj

Figure 3: Pairwise correlation and independence of the cj

The chi-square test rejects the null hypothesis that ci and cj are uncorrelated when p < 0.05. Under
model 1a there is no true dependence between ci and cj , and as expected, the p-values of the test
for model 1a are roughly uniform; those p-values less than 0.05 represent false rejections of the null
(though there are very slightly more than expected test with p < 0.05, which is a mystery). The
p-values of the real classifiers are distributed roughly uniformly except for a subset which are near
zero, indicating statistically-significant dependence. On closer inspection, we find that a large portion
of the dependent pairs have the same class label, a fact which warrants further investigation.

Aside: While the chi-square test is standard, it only rejects or fails to reject the null hypothesis
that the pair are independent. We would instead like to reject a null hypotheses of dependence. An
approach for this is to use an equivalence test in the TOST framework, where the null hypothesis
to be rejected is that the pair is associated with at least some strength. An approach to this using
McNemar’s test is described in [2]. Further investigation is required, but preliminary computations of
this test indicate that the large majority of the associations in the real data, even when statistically
significant, are weak. Bounding the strength of the associations could be useful because UC bound
failure seems more likely if the associations are weak.

Estimating a bound under model 1b Recall that if model 1a were true, meaning the cj are
mutually independent, then every S has a classifier with Acc(h, S) = 0, as argued in Section 2, and
so the UC bound will fail. If we instead assume, under model 1b, that the cj are independent for

5This test can’t be performed for model 2a since a rule of thumb is to require at least 5 examples in each
quadrant of the (ci, cj) contingency tables; example pairs for real data and model 1a are filtered for this criteria,
the effect of which requires more careful consideration in future work.
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all but a small set B of the xj , then we can show bound failure by assuming that all xj ∈ B are
always correctly classified. Observe from figure (1c) that virtually all of h ∈ H obtain at least 0.82
generalization accuracy. We can still have trivial accuracy ≤ 0.1 on most S, meaning a generalization
gap of at least 0.72 with probability ≫ 0:

PS∼Dn

(
sup
h∈H

|Acc(h, S)−Acc(h)| ≥ 0.72

)
≥ PS∼Dn (∃h ∈ H|Acc(h, S) ≤ 0.1)

≈ q(|B|)

where q(|B|) depends on the size of B. We can compute q under the empirical distribution directly,
because the distribution over sample sets will be uniform and discrete. We simply compute the
number of ways of choosing a sample S with |S| = 200 which has ≤20 examples in B, as a fraction
of the total number of ways of choosing a samples. Figure (4) shows that q(|B|) remains near 1 for
|B| ≤ 4000.

Figure 4: The probability q(|B|) of a generalization failure under the UC bound estimate for model
1b, given easy example set with size |B|

A union-bound style approach The issue with assuming model 1a/b is that, while we can empir-
ically verify approximate pairwise independence of the cj , it is much harder to verify the mutual
independence of sets of 200 examples, which is required by the model. It is unclear if there is a way
to argue that the effect of mutual dependence beyond pairwise is minimal.

A potential approach to show bound failure without assuming mutual independence is the Hunter-
Worsley bound [Hun76, Wor82]

P (∪iAi) ≤
n∑

i=1

pi −max
τ∈T

∑
(i,j)∈τ

pij

which bounds the probability of the union of events Ai based on the marginal probabilities pi and
pairwise probabilities pij . The bound optimizes τ ∈ T , the maximum spanning tree from the set T
of spanning trees on the graph with nodes Ai and edge weights pij .

In our setting, the Ai are taken to be the cj , the event that example xj is classified correctly. Given
sample S, we can estimate an upper bound on the probability that any of the cj are classified correctly,
which gives a lower bound on the event that none are. Unfortunately, we see that for most S the
bound is slightly greater than 1 in our data. Further investigation is warranted, however, since this
seems to be related to the existence of very easy examples: if we restrict to sets S with only difficulty
of at least 0.5, we find that bound s < 1 for close to half of the S.

4 Discussion and next steps

Overall, our analysis of the misclassification data is inconclusive wrt to the question of UC bound
viability. Mutually-independent misclassification, as in models 1a/b, seems difficult or impossible to
verify empirically. Even pairwise independence should not be expected exactly in real data. And our
existence arguments for UC bound failure depend on exact independence.

However, there is some indication that UC bound failure is likely. The distribution of misclassifica-
tions which we observe does have a notable absence of strong correlation. Roughly, we see slight but
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detectable pairwise correlation between classification of examples of the same class, and very weak
correlation otherwise. The role of the the class label seems important to investigate further.

Our intuition is that when correlations between example pairs are more frequent and stronger, UC
bounds will be more likely to succeed. But this is not guaranteed: it is conceivable that there could
be strong but imperfect correlation between all pairs, yet still a nonzero probability of every sample
having a misclassifier. The exact role of pairwise correlation strength should be explored. In particular,
is there a relationship between the correlation strength and the Hunter-Worsley bound? This may
reveal settings in which the Hunter-Worsley bound is non-vacuous.
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