
Monotone deep Boltzmann machines

Zhili Feng
Carnegie Mellon University
zhilif@andrew.cmu.edu

Ezra Winston
Carnegie Mellon University
ewinston@cs.cmu.edu

J. Zico Kolter
Carnegie Mellon University
zkolter@cs.cmu.edu

Abstract

Deep Boltzmann machines (DBMs), one of the first “deep” learning methods ever
studied, are multi-layered probabilistic models governed by a pairwise energy
function that describes the likelihood of all variables/nodes in the network. In
practice, DBMs are often constrained, i.e., via the restricted Boltzmann machine
(RBM) architecture (which do not permit intra-layer connections), in order to allow
for more efficient inference. In this work, we revisit the generic DBM approach,
and ask the question: are there other possible restrictions to their design that would
enable efficient (approximate) inference? In particular, we develop a new class of
restricted model, the monotone DBM, which allows for arbitrary self-connection
in each layer, but which restricts the weights in a manner that guarantees the
existence and global uniqueness of a mean-field fixed point. To do this, we leverage
tools from the recently-proposed monotone Deep Equilibrium model, and show
that a particular choice of activation results in a fixed-point iteration that gives a
variational mean-field solution. While this approach is still largely conceptual, it is
the first architecture that allows for efficient approximate inference in fully-general
weight structures for DBMs. We apply this approach to simple deep convolutional
Boltzmann architectures and demonstrate that it allows for tasks such as the joint
completion and classification of images, within a single deep probabilistic setting,
while avoiding the pitfalls of mean-field inference in traditional RBMs.

1 Introduction

This paper considers (deep) Boltzmann machines (DBMs), which are pairwise energy-based proba-
bilistic models given by a joint distribution over variables x with density

p(x) ∝ exp

 ∑
(i,j)∈E

x⊤
i Φijxj +

n∑
i=1

b⊤i xi

 , (1)

where each x1:n denotes a discrete random variable over ki possible values, represented as a one-
hot encoding xi ∈ {0, 1}ki ; E denotes the set of edges in the model; Φi,j ∈ Rki×kj represents
pairwise potentials; and bi ∈ Rki represents unary potentials. Depending on context, these models
are typically referred to as pairwise Markov random fields (MRFs) [Koller and Friedman, 2009], or
(potentially deep) Boltzmann machines [Goodfellow et al., 2016, Salakhutdinov and Hinton, 2009,
Hinton, 2002]. In the above setting each xi may represent an observed or unobserved value, and there
can be substantial structure within the variables; for instance, the collection of variables x may (and
indeed will, in the main settings we consider in this paper) consist of several different “layers” in a
joint convolutional structure, leading to the deep convolutional Boltzmann machine [Norouzi et al.,
2009].

Boltzmann machines were some of the first “deep” networks ever studied Ackley et al. [1985].
However, in modern deep-learning practice, general-form DBMs have largely gone unused, in favor
of restricted Boltzmann machines (RBMs). These are DBMs that avoid any connections within a

Preprint. Under review.

Figure 1: Neural network topology of different Boltzmann machines. The general case is a complete graph. Our
proposed parameterization is a form of general Boltzmann machine.

single layer of the model, and which thus lend themselves to more efficient block-based approximate
inference methods.

In this paper, we revisit the general framework of a generic DBM, and ask the question: are there
any other restrictions (besides avoiding intra-layer connections), that would also allow for efficient
approximate inference methods? To answer this question, we propose a new class of general DBMs,
the monotone deep Boltzmann machine (mDBM); unlike RBMs, these networks can have dense
intra-layer connections, but are parameterized in a manner that constrains the weights so as to still
guarantee an efficient inference procedure. Specifically, in these networks, we show that there is
a unique and globally optimal fixed point of variational mean-field inference; this contrasts with
traditional probabilistic models where mean-field inference may lead to multiple different local
optima. To accomplish this goal, we leverage recent work on monotone Deep Equilibirum (monDEQ)
models [Winston and Kolter, 2020], and show that a particular choice of activation function leads to a
fixed point iteration equivalent to (damped) parallel mean-field updates. Such fixed point iterations
require the development of a new proximal operator method, for which we derive a highly efficient
GPU-based implementation.

Our method also relates closely with previous works on convergent mean-field inference in Markov
random fields (MRFs) [Krähenbühl and Koltun, 2013, Baqué et al., 2016, Lê-Huu and Alahari,
2021]; but these approaches either require stronger conditions on the network or fail to converge to
the true mean-field fixed point, and generally have only been considered on standard “single-layer”
MRFs. Our approach can be viewed as a combined model parameterization and (properly damped)
mean-field inference procedure, such that the resulting iteration is guaranteed to converge to a unique
optimal mean-field fixed point, when run in parallel over all variables.

Although the approach is still largely conceptual, we show for the first time that one can learn
and perform inference in structured multi-layer Boltzmann machines which contain intra-layer
connections. For example, we perform both learning and inference for a deep convolutional, multi-
resolution Boltzmann machine, and apply the network to model MNIST and CIFAR-10 pixels and
their classes conditioned on partially observed images. Such joint probabilistic modelling allows us
to simultaneously impute missing pixels and predict the class. While these are naturally small-scale
tasks, we emphasize that performing joint probabilistic inference over a complete model of this
type is a relatively high-dimensional task as far as traditional mean-field inference is concerned.
We compare our approach to (block structured) mean-field inference in classical RBMs, showing
substantial improvement in these estimates, and also compare to alternative mean-field inference
approaches. Although in initial phases, the work hints at potential new directions for Boltzmann
machines involving very different types of restrictions than what has typically been considered in
deep learning.

2 Background and related work

This paper builds upon three main avenues of work: 1) deep equilibrium models, especially their
convergent version, the monotone DEQ; 2) the broad topic of energy-based deep model and Boltzmann
machines in particular; and 3) work on concave potentials and parallel methods for mean-field
inference. We discuss each of these below.

2

Equilibrium models and their provable convergence The DEQ model was first proposed by Bai
et al. [2019]. Based on the observation that a neural network zt+1 = σ(Wzt + Ux+ b) with input
injection x usually converges to a fixed point, they modeled an effectively infinite-depth network
with input injection directly via its fixed point: z∗ = σ(Wz∗ + Ux + b). Its backpropagation is
done through the implicit function theorem and only requires constant memory. Bai et al. [2020]
also showed that the multiscale DEQ models achieve near state-of-the-art performances on many
large-scale tasks. Winston and Kolter [2020] later presented a parametrization of the DEQ (denoted
as monDEQ) that guarantees provable convergence to a unique fixed point, using monotone operator
theory. Specifically, they parameterize W in a way that I −W ⪰ mI (called m-strongly monotone)
is always satisfied during training for some m > 0; they convert nonlinearities into proximal
operators (which include ReLU, tanh, etc.), and show that using existing splitting methods like
forward-backward and Peaceman-Rachford can provably find the unique fixed point.

Markov random field (MRF) and its variants MRF is a form of energy-based model, which model
joint probabilities of the form pθ(x) = exp (−Eθ(x)) /Zθ for an energy function Eθ. A common type
of MRF is the Boltzmann machine, the most successful variant of which is the restricted Boltzmann
machines (RBM) [Hinton, 2002] and its deep (multi-layer) variant [Salakhutdinov and Hinton, 2009].
Particularly, RBMs define Eθ(v, h) = −a⊤v − b⊤h − v⊤Wh, where θ = {W,a, b}, v is the set
of visible variables, and h is the set of latent variables. It is usually trained using the contrastive-
divergence algorithm, and its inference can be done efficiently by a block mean-field approximation.
However, a particular restriction of RBMs is that there can be no intra-layer connections, that is,
each variable in v (resp. h) is independent conditioned on h (resp. v). A deep RBM allows different
layers of hidden nodes, but there cannot be intra-layer connections. By contrast, our formulation
allows intra-layer connections and is therefore is more expressive in this respect. See Figure 1 for
the network topology of RBM, deep RBM, and general BM (we also use the term general deep
BM interchangeably to emphasize the existence of deep structure). Wu et al. [2016] proposed a
deep parameterization of MRF, but their setting only considers a grid of hidden variables h and the
connections among hidden units are restricted to the neighboring nodes. Therefore, it is a special case
of our parameterization (although their learning algorithm is orthogonal to ours). Numerous works
also try to combine deep neural networks with conditional random fields (CRF) [Krähenbühl and
Koltun, 2013, Zheng et al., 2015, Schwartz et al., 2017] These models either train a pre-determined
kernel as an RNN or use neural networks for producing either inputs or parameters of their CRFs.

Parallel and convergent mean-field It is well-known that mean-field updates converge locally
using a coordinate ascent algorithm [Blei et al., 2017]. However, local convergence is only guaranteed
if the update is applied sequentially. Nonetheless, several works have proposed techniques to
parallelize updates. Krähenbühl and Koltun [2013] proposed a concave-convex procedure (CCCP)
to minimize the KL divergence between the true distribution and the mean-field variational family.
To achieve efficient inference, they use a concave approximation to the pairwise kernel, and their
fast update rule only converges if the kernel function is concave. Later, Baqué et al. [2016] derived
a similar parallel damped forward iteration to ours that provably converges without the concave
potential constraint. However, unlike our approach, they do not use a parameterization which ensures
a global mean-field optimum, and their algorithm therefore may not converge to the actual fixed point
of the mean-field updates. This is because Baqué et al. [2016] used the prox1f proximal operator
(described below), whereas we derive the proxαf operator to guarantee global convergence when
doing mean-field updates in parallel. What’s more, Baqué et al. [2016] focused only on inference
over prescribed potentials, and not on training the (fully parameterized) potentials as we do here.
Lê-Huu and Alahari [2021] brought up a generalized Frank-Wolfe based framework for mean-field
updates which include the methods proposed by Baqué et al. [2016], Krähenbühl and Koltun [2013].
Their results only guarantee global convergence to a local optimal.

3 Monotone deep Boltzmann machines and approximate inference

In this section, we present the main technical contributions of this work. We begin by presenting a
parameterization of the pairwise potential in a Boltzmann machine that guarantees the monotonicity
condition. We then illustrate the connection between a (joint) mean-field inference fixed point and
the fixed point of our monotone Boltzmann machine (mDBM) and discuss how deep structured
networks can be implemented in this form practically; this establishes that, under the monotonicity

3

conditions on Φ, there exists a unique globally-optimal mean-field fixed point. Finally, we present an
efficient parallel method for computing this mean-field fixed point, again motivated by the machinery
of monotone DEQs and operator splitting methods.

3.1 A monotone parameterization of general Boltzmann machines

In this section, we show how to parameterize our probabilistic model in a way that the pairwise
potentials satisfy I −Φ ⪰ mI , which will be used later to show the existence of a unique mean-field
fixed point. Additionally, since Φ defines a graphical model that has no self-loop, we further require
Φ to be a block hollow matrix (that is, the ki×ki diagonal blocks corresponding to each variable must
be zero). While both these conditions on Φ are convex constraints, in practice it would be extremely
difficult to project a generic set of weights onto this constraint set under an ordinary parameterization
of the network.

Thus, we instead advocate for a non-convex parameterization of the network weights, but one which
guarantees that the monotonicity condition is always satisfied, without any constraint on the weights
in the parameterization. Specifically, define the block matrix

A = [A1 A2 · · · An]

with Ai ∈ Rd×ki matrices for each variables, and where d can be some arbitrarily chosen dimension.
Then let Âi be a spectrally-normalized version of Ai

Âi = Ai ·min{
√
1−m/∥Ai∥2, 1} (2)

i.e., a version of Ai normalized such that its largest singular value is at most
√
1−m (note that we

can compute the spectral norm of Ai as ∥Ai∥2 = ∥AT
i Ai∥1/22 , which involves computing the singular

values of only a ki × ki matrix, and thus is very fast in practice). We define the Â matrix analogously
as the block version of these normalized matrices.

Then we propose to parameterize Φ as

Φ = blkdiag(ÂT Â)− ÂT Â (3)

where blkdiag denotes the block-diagonal portion of the matrix along the ki × ki block. Put another
way, this parameterizes Φ as

Φij =

{
−ÂT

i Âj if i ̸= j,

0 if i = j.
(4)

As the following simple theorem shows, this parameterization guarantees both hollowness of the Φ
matrix and monotonicity of I −Φ, for any value of the A matrix.

Theorem 3.1. For any choice of parameters A, under the parametrization equation 3 above, we
have that 1) Φii = 0 for all i = 1, . . . , n, and 2) I −Φ ⪰ mI .

Proof. Block hollowness of the matrix follows immediately from construction. To establish mono-
tonicity, note that

I −Φ ⪰ mI ⇐⇒ I + ÂT Â− blkdiag(ÂT Â) ⪰ mI

⇐= I − blkdiag(ÂT Â) ⪰ mI ⇐⇒ I − ÂT
i Âi ⪰ mI, ∀i

⇐⇒ ∥Âi∥2 ≤
√
1−m, ∀i.

(5)

This last property always holds by construction of Âi.

3.2 Mean-field inference as a monotone DEQ

In this section, we formally present how to formulate the mean-field inference as a DEQ update.
Recall from before that we are modeling a distribution of the form Equation (1). We are interested
in approximating the conditional distribution p(xh|xo), where o and h denote the observed and
hidden variables respectively, with a factored distribution q(xh) =

∏
i∈h qi(xi). Here, the standard

4

mean-field updates (which minimize the KL divergence between q(xh) and p(xh|xo) over the single
distribution qi(xi)) are given by the following equation,

qi(xi) := softmax

 ∑
j:(i,j)∈E

Φijqj(xj) + bi

where overloading notation slightly, we let qj(xj) denote a one-hot encoding of the observed value
for any j ∈ o (see e.g., Koller and Friedman [2009] for a full derivation).

The essence of the above updates is a characterization of the joint fixed point to mean-field inference.
For simplicity of notation, defining

q = [q1(x1) q2(x2) . . .]
T
.

We see that qh is a joint fixed point of all the mean-field updates if and only if

qh = softmax (Φhhqh +Φhoxo + bh) (6)

where xo analogously denotes the stacked one-hot encoding of the observed variables.

We briefly recall the monotone DEQ framework of Winston and Kolter [2020]. Given input vector x,
a monotone DEQ computes the fixed point z⋆(x) that satisfies the equilibrium equation z⋆(x) =
σ(Wz⋆(x) + Ux+ b). Then if: 1) σ is given by a proximal operator1 σ(x) = prox1f (x) for some
convex closed proper (CCP) f , and 2) if we have the monotonicity condition I −W ⪰ mI (in the
positive semidefinite sense) for some m > 0, then for any x there exists a unique fixed point z⋆(x),
which can be computed through standard operator splitting methods, such as forward-backward
splitting.

We now state our main claim of this subsection, that under certain conditions the mean-field fixed
point can be viewed as the fixed point of an analogous DEQ. This is formalized in the following
proposition.
Proposition 3.1. Suppose that the pairwise kernel Φ satisfies I −Φ ⪰ mI 2 for m > 0. Then the
mean-field fixed point

qh = softmax (Φhhqh +Φhoxo + bh) (7)
corresponds to the fixed point of a monotone DEQ model. Specifically, this implies that for any xo,
there exists a unique, globally-optimal fixed point of the mean-field distribution qh.

As the monotonicity condition of the monotone DEQ is assumed in the proposition, the proof of the
proposition rests entirely in showing that the softmax operator is given by prox1f for some CCP f .
Specifically, as shown in Krähenbühl and Koltun [2013], this is the case for

f(z) =
∑
i

zi log zi −
1

2
∥z∥22 + I

{∑
i

zi = 1, zi ≥ 0

}
(8)

i.e., the restriction of the entropy minus squared norm to the simplex (note that even though we are
subtracting a squared norm term it is straightforward to show that this function is convex, since the
second derivatives are given by 1/zi − 1, which is always non-negative over its domain).

3.3 Practical considerations when modelling mDBMs

The construction in Section 3.1 guarantees monotonicity of the resulting pairwise probabilistic
model. However, instantiating the model in practice, where the variables represent hidden units of a
deep architecture (i.e., representing multi-channel image tensors with pairwise potentials defined by
convolutional operators), requires substantial subtlety and care in implementation. In this setting, we
do not want to actually represent A explicitly, but rather determine a method for multiplying Av and
ATv for some vector v (as we see in Section 3.2, this is all that is required for the parallel mean-field
inference method we propose). This means that certain blocks of A are typically parameterized as
convolutional layers, with convolution and transposed convolution operators as the main units of
computation.

1A proximal operator is defined by proxα
f (x) = argminz

1
2
∥x− z∥2 + αf(z).

2Technically speaking, we only need I −Φhh ⪰ mI , but since we want this to hold for any choice of h, we
need the condition to apply to the entire Φ matrix.

5

q1 q2
q3

q4

A11

A41

A44

qi(xi)

Figure 2: Illustration of a possible deep convolutional Boltzmann machine, where the monotonicity structure
can still be enforced.

More specifically, we typically want to partition the full set of hidden units into some K distinct sets

q = [q1 q2 . . . qK]
T (9)

where e.g., qi would be best represented as a height × width × groups × cardinality tensor (i.e., a
collection of a multiple hidden units corresponding to different locations in a typical deep network
hidden layer). Note that here qi is not the same as qi(xi), but rather the collection of many different
individual variables. These qi terms can be related to each other via different operators, and a natural
manner of parameterizing A in this case is as an interconnected set of a convolutional or dense
operators. To represent the pairwise interactions, we can create a similarly-factored matrix A, e.g.,
one of the form

A =

A11 0 · · · 0
A21 A22 · · · 0

...
...

. . .
...

AK1 AK2 · · · AKK

 (10)

where e.g., Aij is a (possibly strided) convolution mapping between the tensors representing qj and
qi. In this case, we emphasize that Aij is not the kernel matrix that one “slides” along the variables.
Instead, Aij is the linear mapping as if we write the convolution as a matrix-matrix multiplication.
For example, a 2D convolution with stride 1 can be expressed as a doubly block circulant matrix (the
case is more complicated when different striding is allowed). This parametrization is effectively a
general Boltzmann machine, since each random variable in Equation (9) can interactive with any
other variables except for itself. Varying Aij , the formulation in Equation (10) is rich enough for any
types of architectures including convolutions, fully-connected layers, and skip-connections, etc.

An illustration of one possible network structure is shown in Figure 2. The precise details of how
one computes the block diagonal elements of ATA, and how one normalizes the proper diagonal
blocks (which, we emphasize, still just requires computing the singular values of matrices whose
size is the cardinality of a single qi(xi)) are somewhat involved, so we defer a complete description
to the Appendix (and accompanying code). The larger takeaway message, though, is that it is
possible to parameterize complex convolutional multi-scale Boltzmann machines, all while ensuring
monotonicity.

3.4 Efficient parallel solving for the mean-field fixed point

Although the monotonicity of Φ guarantees the existence of a unique solution, it does not necessarily
guarantee that the simple iteration

q
(t)
h = softmax(Φhhq

(t−1)
h +Φhoxo + bh) (11)

will converge to this solution. Instead, to guarantee convergence, one needs to apply the damped
iteration (see, e.g. [Winston and Kolter, 2020])

q
(t)
h = proxαf

(
(1− α)q

(t−1)
h + α(Φhhq

(t−1)
h +Φhoxo + bh)

)
. (12)

The damped forward-backward iteration converges linearly to the unique fixed point if α ≤ 2m/L2,
assuming I − Φ is m-strongly monotone and L-Lipschitz [Ryu and Boyd, 2016]. Crucially, this
update can be formed in parallel over all the variables in the network: we do not require a coordinate
descent approach as is typically needed by mean-field inference.

The key issue, though is that while prox1f (x) = softmax(x) for f defined as in Equation (8), in
general this does not hold for α ̸= 1. Indeed, for α ̸= 1, there is no closed form solution to

6

the proximal operation, and computing the solution is substantially more involved. Specifically,
computing this proximal operator involves solving the optimization problem

proxαf (x) = argmin
z

1

2
∥x− z∥22 + α

∑
i

zi log zi −
α

2
∥z∥22 s.t

∑
i

zi = 1, z ≥ 0. (13)

The following theorem, proved in the Appendix, characterizes the solution to this problem for
α ∈ (0, 1) (although it is also possible to compute solutions for α > 1, this is not needed in practice,
as it corresponds to a “negatively damped” update, and it is typically better to simply use the softmax
update in such cases).
Theorem 3.2. Given f as defined in Equation (8), α ∈ (0, 1), and x ∈ Rk, the proximal operator
proxαf (x) is given by

proxαf (x)i =
α

1− α
W

(
1− α

α
exp

(
xi − α+ λ

α

))
,

where λ ∈ R is the unique solution chosen to ensure that the resulting
∑

i prox
α
f (xi) = 1, and where

W (·) is the principal branch of the Lambert W function.

In practice, however, this is not the most numerically stable method for computing the proximal
operator, especially for small α, owing to the large term inside the exponential. Computing the
proximal operation efficiently is somewhat involved, though briefly, we define the alternative function

g(y) = log
α

1− α
W

(
1− α

α
exp

(y

α
− 1

))
(14)

and show how to directly compute g(y) using Halley’s method (note that Halley’s method is also
the preferred manner to computing the Lambert W function itself numerically [Corless et al., 1996]).
Finding the prox operator then requires that we find λ such that

∑k
i=1 exp(g(xi + λ)) = 1. This can

be done via (one-dimensional) root finding with Newton’s method, which is guaranteed to always
find a solution here, owing to the fact that this function is convex monotonic for λ ∈ (−∞, 1).
We can further compute the gradients of the g function and of the proximal operator itself via
implicit differentiation (i.e., we can do it analytically without requiring unrolling the Newton or
Halley iteration). We describe the details in the Appendix, and include an efficient PyTorch function
implementation in the supplementary material.

Comparison to Winston and Kolter [2020] Although this work uses the same monotonicity
constraint as in Winston and Kolter [2020], our result further requires the linear module Φ to be
hollow, and extend their work to the softmax nonlinear operator as well. These extensions introduce
significant complications, but also enable us to interpret our network as a probabilistic model, while
the network in Winston and Kolter [2020] cannot.

Training consideration Our forward inference procedure ultimately uses mean-field inference,
we decide to train the model directly to output the correct marginals, when running this mean-field
procedure. This is known as a marginal-based loss [Domke, 2013]. In the context of mDBMs, this
procedure has a particularly convenient form, as it corresponds roughly to the “typical” training of
DEQ. This allows us to train models in a “self-supervised” fashion. See details in Appendix B.1.

4 Experimental evaluation

As a proof of concept, we evaluate our proposed mDBM on the MNIST and CIFAR-10 datasets. We
demonstrate how to jointly model missing pixels and class labels conditioned on only a subset of
observed pixels. On MNIST, we compare mDBM to mean-field inference in a traditional deep RBM.
Despite being small-scale tasks, the goal here is to demonstrate joint inference and learning over
what is still a reasonably-sized joint model, considering the number of hidden units. Nonetheless, the
current experiments are admittedly largely a demonstration of the proposed method rather than a full
accounting of its performance.

We also show how our mean-field inference method compares to those proposed in prior works.
On the joint imputation and classification task, we train models using our updates and the updates
proposed by Krähenbühl and Koltun [2013] and Baqué et al. [2016], and perform mean-field inference
in each model using all three update methods, with and without the monotonicity constraint.

7

(a) Test data with 60% pixels randomly
masked

(b) Imputation with 60% pixels randomly
masked

(c) Original test data

(d) Test data with 60% pixels randomly
masked

(e) Imputation with 60% pixels randomly
masked

(f) Original test data

Figure 3: MNIST pixel imputation using mDBM (top row) and deep RBM (bottom row), where the RBM test
results are generated using mean-field inference instead of Gibbs sampling.

(a) Test data has 50% pixels ran-
domly masked

(b) Imputed pixel inference (with-
out injection labels)

(c) Original image (d) Imputation with deep RBM.

Figure 4: CIFAR-10 pixel imputation using mDBM and deep RBM

mDBM and deep RBM on MNIST We randomly mask each pixel independently with probability
60%, such that in expectation only 40% of the pixels are observed. The original MNIST dataset has
one channel representing the gray-scale intensity, ranging between 0 and 1. We adopt the strategy of
Van Oord et al. [2016] to convert this continuous distribution to a discrete one. We bin the intensity
evenly into 4 categories {0, . . . , 3}, and for each channel use a one-hot encoding of the category
so that the input data has shape 4 × 28 × 28. We remark that the number of categories is chosen
arbitrarily and can be any integer. Additional details are given in the appendix.

The mDBM and deep RBM trained on the joint imputation and classification task obtain test classifi-
cation accuracy of 92.95% and 64.23%, respectively. Pixel imputation is shown in Figure 3. We see
that the deep RBM is not able to impute the missing pixels well, while the mDBM can. Importantly,
we note however that for an apples-to-apples comparison, the test results in the RBM are generated
using mean-field inference. The image imputation of RBM runs block mean-field updates of 1000
steps and the classification runs 2 steps, and increasing number of iterations does not improve test
performance significantly. The RBM also admits efficient Gibbs sampling, which performs much
better and is detailed in the appendix.

We additionally evaluate mDBM on a task in which random 14× 14 patches are masked. To obtain
good performance on this task requires lifting the monotonicity constraint; we find that mDBM
converges regardless (see appendix).

mDBM and deep RBM on CIFAR-10 We evaluate mDBM on an analogous task of image pixel
imputation and label prediction on CIFAR-10. Model architecture and training details are given in
the appendix. With 50% of the pixels observed, the model obtains 58% test accuracy, and can impute
the missing pixels effectively (see Figure 4). The baseline deep RBM is trained to impute the missing
pixels using CD-1 with number of neurons 3072-500-100.

Comparison of inference methods We conduct several experiments comparing our mean-field
inference method to those proposed by Krähenbühl and Koltun [2013] and Baqué et al. [2016],
denoted as Krähenbühl’s and Baqué’s respectively. While a full description of these methods and the
experiments is left to the appendix, we highlight some of the key findings here. We train models

8

Table 1: Relative update residual when monotonicity is
enforced

Train
Inference Krähenbühl Baqué Ours

Krähenbühl 0.0004 0.0061 0.0024
Baqué 1.250 0.0059 0.0024
Ours 1.144 0.0057 0.0017

0.000.020.040.060.080.10
Tolerance (decreasing)

0

10

20

30

40

50

Nu
m

be
r o

f i
te

ra
tio

ns

Our
Baque

Figure 5: Convergence speed of infer-
ence methods on a model trained with
Krähenbühl’s updates.

using the three different update methods: ours, Krähenbühl’s and Baqué’s; we then perform inference
using all three methods as well. A comparison to the regularized Frank-Wolfe method raised by
Lê-Huu and Alahari [2021] can be found in the appendix.

Table 1 shows the relative update residuals after 100 steps of each inference method on each model. We
observe that Krähenbühl’s method diverges when the model was not trained using the corresponding
updates, whereas Baqué’s and ours converge on all three models, with our method converging more
quickly. The improved convergence speed can also be seen in Figure 5). However, note that Baqué’s
method is not guaranteed to converge to the true mean-field fixed-point. As we show in the appendix
(Figure 10c), on an untrained model our method converges to the true fixed-point while Baqué’s does
not.

Future directions It is extremely useful to consider fundamentally different restrictions as have
been applied to meanfield inference and graphical models in the past, and our work can lead to a
number of interesting directions: (1) Theorem 3.1 is only a sufficient but not necessary condition
for monotonicity. Improving this could potentially make our current monotone model much more
expressive. (2) In Theorem 3.1, the parameter m > 0 describes how monotone the model is. Is it
possible to use a m < 0 to ensure that the model is “boundedly non-monotone”, but still enjoys
favorable convergence property? (3) Our model currently only learns conditional probability. Is
it possible to make it model joint probability efficiently? One way is to mimic PixelCNN: let
P (xn

1) =
∏n

i=1 P (xn|xn−1
1). This is inefficient for us in both inference and training, is there a way

to improve? (4) Although we have a fairly efficient implementation of proxαf , it is still slower than
normal nonlinearities like ReLU or softmax. Is there a way to efficiently scale mDBMs?

5 Conclusion

In this work, we give a monotone parameterization for general Boltzmann machines, and connect its
mean-field fixed point to a monotone DEQ model. We provide a mean-field update method that is
proven to be globally convergent. Our parameterization allows for full parallelization of mean-field
updates without restricting the potential function to be concave, thus addressing issues with prior
approaches. Moreover, we allow complicated and hierarchical structures among the variables and
show how to efficiently implement them. For parameter learning, we directly optimize the marginal-
based loss over the mean-field variational family, circumventing the intractability of computing the
partition function. Our model is evaluated on the MNIST and CIFAR-10 dataset for simultaneously
predicting with missing data and imputing the missing data itself. As a demonstration of concept, we
also deliver several illustrations to interesting future directions.

References
D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltzmann machines.

Cognitive science, 9(1):147–169, 1985.

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. arXiv preprint arXiv:1909.01377, 2019.

S. Bai, V. Koltun, and J. Z. Kolter. Multiscale deep equilibrium models. arXiv preprint
arXiv:2006.08656, 2020.

9

P. Baqué, T. Bagautdinov, F. Fleuret, and P. Fua. Principled parallel mean-field inference for discrete
random fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5848–5857, 2016.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth. On the lambertw function.
Advances in Computational mathematics, 5(1):329–359, 1996.

Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Class-balanced loss based on effective number of
samples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9268–9277, 2019.

J. Domke. Learning graphical model parameters with approximate marginal inference. IEEE
transactions on pattern analysis and machine intelligence, 35(10):2454–2467, 2013.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT press,
2009.

P. Krähenbühl and V. Koltun. Parameter learning and convergent inference for dense random fields.
In International Conference on Machine Learning, pages 513–521. PMLR, 2013.

M. Lázaro-Gredilla, W. Lehrach, N. Gothoskar, G. Zhou, A. Dedieu, and D. George. Query training:
Learning a worse model to infer better marginals in undirected graphical models with hidden
variables. arXiv preprint arXiv:2006.06803, 2020.

K. Lê-Huu and K. Alahari. Regularized frank-wolfe for dense crfs: Generalizing mean field and
beyond. Advances in Neural Information Processing Systems, 34, 2021.

M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted boltzmann machines
for shift-invariant feature learning. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2735–2742. IEEE, 2009.

E. K. Ryu and S. Boyd. Primer on monotone operator methods. Appl. Comput. Math, 15(1):3–43,
2016.

R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In Artificial intelligence and statistics,
pages 448–455. PMLR, 2009.

I. Schwartz, A. G. Schwing, and T. Hazan. High-order attention models for visual question answering.
arXiv preprint arXiv:1711.04323, 2017.

A. Van Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. In International
Conference on Machine Learning, pages 1747–1756. PMLR, 2016.

H. F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM Journal on Numerical
Analysis, 49(4):1715–1735, 2011.

E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. arXiv preprint
arXiv:2006.08591, 2020.

Z. Wu, D. Lin, and X. Tang. Deep markov random field for image modeling. In European Conference
on Computer Vision, pages 295–312. Springer, 2016.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. Torr.
Conditional random fields as recurrent neural networks. In Proceedings of the IEEE international
conference on computer vision, pages 1529–1537, 2015.

10

A Appendix

A.1 Deferred proofs

Theorem 3.2. Given f as defined in Equation (8), α ∈ (0, 1), and x ∈ Rk, the proximal operator
proxαf (x) is given by

proxαf (x)i =
α

1− α
W

(
1− α

α
exp

(
xi − α+ λ

α

))
,

where λ ∈ R is the unique solution chosen to ensure that the resulting
∑

i prox
α
f (xi) = 1, and where

W (·) is the principal branch of the Lambert W function.

Proof. By definition, the proximal operator induced by f (the same f in Equation (8)) and α solves
the following optimization problem:

min
z

1

2
∥x− z∥2 + α

∑
i

zi log zi −
α

2
∥z∥2

s.t. zi ≥ 0, i = 1, . . . , d,∑
i

zi = 1

of which the KKT condition is

− xi + zi + α+ α log zi − αzi + λ− µi = 0, for i ∈ [d]

µi ≥ 0, zi ≥ 0,
∑
i∈[d]

µizi = 0,

d∑
i=1

zi = 1.

We have that µi = 0 is feasible and the first equation of the above KKT condition can be massaged as

− xi + zi + α+ α log zi − αzi + λ− µi = 0

⇐⇒ (1− α)zi + α log zi = xi − α− λ

⇐⇒ (1− α)zi + α log zi
α

=
xi − α− λ

α

⇐⇒ exp

(
(1− α)zi + α log zi

α

)
= exp

(
xi − α− λ

α

)
⇐⇒ zi exp

(
1− α

α
zi

)
= exp

(
xi − α− λ

α

)
⇐⇒
1− α

α
zi exp

(
1− α

α
zi

)
=

1− α

α
exp

(
xi − α− λ

α

)
⇐⇒ 1− α

α
zi = W

(
1− α

α
exp

(
xi − α− λ

α

))
where W is the lambert W function. Notice here zi > 0. Our primal problem is convex and Slater’s
condition holds. Hence, we conclude that

zi =
α

1− α
W

(
1− α

α
exp

(
xi − α− λ

α

))
.

A.2 Convolution network

It is clear that the monotone parameterization in Section 3 directly applies to fully-connected networks,
and all the related quantities can be calculated easily. Nonetheless, the real power of the DEQ model
comes in when we use more sophisticated linear operators like convolutions. In the context of

11

Boltzmann machines, the convolution operator gives edge potentials beneficial structures. For
example, when modeling the joint probability of pixels in an image, it is intuitive that only the nearby
pixels depend closely on each other.

Let A ∈ Rk×k×r×r denote a convolutional tensor with kernel size r and channel size k, let x denote
some input. For a convolution with stride 1, the block diagonal elements of ATA simply form a 1× 1
convolution. In particular, we apply the convolutions

−AT (A(x)) + Ã(x) (15)

where Ã is a 1× 1 convolution given by

Ã[:, :] =
∑
i,j

A[:, :, i, j]TA[:, :, i, j]. (16)

We can normalize by the spectral norm of Ã term to ensure strong monotonicity. Since Ã can be
rewritten as a k × k matrix and k is usually small, its spectral norm can be easily calculated.

It takes more effort to work out convolutions with stride other than 1. Specifically, the block diagonal
terms do not form a 1× 1 convolution anymore, instead, the computation varies depending on the
location. It is easier to see the computation directly in the accompanying code.

Grouped channels It is crucial to introduce the concept of grouped channels, which allows us to
represent multiple categorical variables in a single location, such as the three categorical variables
representing the three (binned) color channels of an RGB pixel. In this case, each of the three RGB
channels will be represented by a different group of k channels representing the k bins. The grouping
is achieved by having the nonlinearity function (softmax) applied to each group separately. We
remark that the convolutions themselves are not grouped, otherwise none of the red pixels would
interact with green or blue pixels, etc. Instead, we want all RGB channels to interact with each other
(except that channel i at position (j, k) does not interact with itself). That means in Equation (3), the
blkdiag(ÂT Â) is grouped in the following way. Recall that this block diagonal term has element of
size ki × ki for i ∈ [n]. This parameterization has only 1 group. With g groups, the element of the
block diagonal matrix then has size ki1 × ki1 , . . . , kig × kig for i ∈ [n], where

∑
j∈[g] kij = ki. We

also observe empirically that grouping the latent variables improves the performance.

A.3 Efficient computation of proxαf

The solution to the proximal operator in damped forward iteration given in Theorem 3.2 involves the
Lambert W function, which does not attain an analytical solution. In this section, we show how to
efficiently calculate the nonlinearity σ(xi), as well as its Jacobian matrix for backward iteration.

Let f(y) = α
1−αW

(
1−α
α exp

(
y
α − 1

))
, and we have

x = log f(y) = log
α

1− α
+ log ey/α−1 + log

1− α

α
− W

(
1− α

α
exp

(y

α
− 1

))
,

where the last equality uses the identity log(W (x)) = log x − W (x). Rewrite
W

(
1−α
α exp

(
y
α − 1

))
= f(y) 1−α

α and massage the terms, we have that solving log f(y) is equiva-
lent to finding the root of

h(x) = y − α− ex(1− α)− αx.

Direct calculation shows that h′(x) = −α − (1 − α)ex and h′′(x) = −(1 − α)ex. Note here y is
the input and it is known to us, and x is a scalar. Hence we can efficiently solve the root finding
problem using Halley’s method. For backpropagation, we need dx

dy , which can be computed by
implicit differentiation:

h(x) = y − α− ex(1− α)− αx = 0

=⇒dx

dy
=

1

α+ (1− α)ex
=

1

y − αx
.

12

Now we can find λ s.t
∑

i zi = 1 using Newton’s method on g(λ) =
∑

i e
log(f(xi+λ)) − 1 = 0.

Note this is still a one-dimensional optimization problem. A direct calculation shows that dg
dλ =∑

i e
log(f(xi+λ)) d log(f(xi+λ)

dλ , and above we have already calculated that

d log(f(xi + λ)

dλ
=

dx∗

dy
=

1

y + λ− αx
.

For backward computation, by the chain rule, we have:

delog f(xi+λ)

dxi
= elog f(xi+λ) d log(f(xi + λ))

dxi

= elog f(xi+λ) 1 + dλ/dxi

xi + λ− α log(f(xi + λ))
,

where the last step is derived by implicit differentiation. Now to get dλ/dxi, notice that by applying
the implicit function theorem on p(x, λ(x)) =

∑
i e

log(f(xi+λ)) − 1 = 0, we get

dλ

dxi
= −

(
dp

dλ

)−1
dp

dxi
.

Thus we have all the terms computed, which finishes the derivation.

B Additional Experiments and Details

Here we provide the model architectures and experiment details omitted in the main text.

B.1 Training methodology

We discuss approaches for training mDBMs, exploiting their efficient approach to mean-field in-
ference. Probabilistic models are typically trained via approximate likelihood maximization, and
since the mean-field approximation is based upon a particular likelihood approximation, it may
seem most natural to use this same approximation to train parameters. In practice, however, this is
often a suboptimal approach. Specifically, because our forward inference procedure ultimately uses
mean-field inference, it is better to train the model directly to output the correct marginals, when
running this mean-field procedure. This is known as a marginal-based loss [Domke, 2013]. In the
context of mDBMs, this procedure has a particularly convenient form, as it corresponds roughly to
the “typical” training of DEQ.

In more detail, suppose we are given a sample x ∈ X (i.e., at training time the entire sample is
given), along with a specification of the “observed” and “hidden” sets, o and h respectively. Note
that the choice of observed and hidden sets is potentially up to the algorithm designer, and can
effectively allows one to train our model in a “self-supervised” fashion, where the goal is to predict
some unobserved components from others. In practice, however, one typically wants to design hidden
and observed portions congruent with the eventual use of the model: e.g., if one is using the model
for classification, then at training time it makes sense for the label to be “hidden” and the input to be
“observed.”

Given this sample, we first solve the mean-field inference problem to find q⋆
h(xh) such that

q⋆
h = softmax (Φhhq

⋆
h +Φhoxo + bh) . (17)

For this sample, we know that the true value of the hidden states is given by xh. Thus, we can apply
some loss function ℓ(q⋆

h,xh) between the prediction and true value, and update parameters of the
model θ = {A, b} using their gradients

∂ℓ(q⋆
h,xh)

∂θ
=

∂ℓ(q⋆
h,xh)

∂q⋆
h

∂q⋆
h

∂θ
=

∂ℓ(q⋆
h,xh)

∂q⋆
h

(
I − ∂g(q⋆

h)

∂q⋆
h

)−1
∂g(q⋆

h)

∂θ
(18)

with
g(q⋆

h) ≡ proxαf ((1− α)q∗
h + α(Φhhq

∗
h +Φhoxo + bh))

13

and where the last equality comes from the standard application of the implicit function theorem
as typical in DEQs or monotone DEQs. This backward pass can also be computed via an iterative
approach, and here the details exactly mirror that of Winston and Kolter [2020].

As a final note, we also mention that owning to the restricted range of weights allowed by the
monotonicty constraint, the actual output marginals qi(xi) are often more uniform in distribution
than desired. Thus, we typically apply the loss to a scaled marginal

q̃i(xi) ∝ qi(xi)
τi (19)

where τi ∈ R+ is a variable-dependent learnable temperature parameter. Importantly, we emphasize
that this is only done after convergence to the mean-field solution, and thus only applies to the
marginals to which we apply a loss: the actual internal iterations of mean-field cannot have such a
scaling, as it would violate the monotonicity condition.

B.2 Details

Model architectures For MNIST experiments, using the notation in Equation (10), the mDBM
consists of a 4-layer deep monotone DEQ with the following structure:A11 0 0 0

A21 A22 0 0
A31 A32 A33 0
0 0 A43 A44

 ,

where A11 is a 20×20×3×3 convolution, A22 is a 40×40×3×3 convolution, A21 is a 40×20×3×3
convolution with stride 2, A33 is a 80×80×3×3 convolution, A31 is a 80×20×3×3 convolution
with stride 4, A32 is a 80 × 40 × 3 × 3 convolution with stride 2, A43 is a (80 · 7 · 7) × 10 dense
linear layer, and A44 is a 10× 10 dense linear layer. The corresponding variable q as in Equation (9)
then has 4 elements of shape (20× 28× 28), (40× 14× 14), (80× 7× 7), (10× 1). When applying
the proximal operator to q, we use 1, 10, 20, 1 as their number of groups, respectively.

The deep RBM consists of 3-layers where the first hidden layer has 300 neurons, and the last
hidden layer (representing the digits) has 10 neurons, amounting to in total 239,294 parameters. For
comparison, the mDBM has 192,650 parameters.

The mDBM used on CIFAR-10 is the same as for the MNIST experiments with the following
exceptions: A11 is a 20× 20× 3× 3 convolution, A22 is a 24× 24× 3× 3 convolution, A21 is a
24×20×3×3 convolution with stride 2, A33 is a 48×48×3×3 convolution, A31 is a 48×20×3×3
convolution with stride 4, A32 is a 48×24×3×3 convolution with stride 2, A43 is a (48 ·8 ·8)×10
dense linear layer, and A44 is a 10 × 10 dense linear layer. The corresponding variable q as in
Equation (9) then has 4 elements of shape (60× 32× 32), (24× 16× 16), (48× 8× 8), (10× 1).
When applying the proximal operator to q, we use 1, 6, 12, 1 as their number of groups, respectively.

mDBM Training details and hyperparameters Treating the image reconstruction as a dense
classification task, we use cross-entropy loss and class weights 1−β

1−βni
with β = 0.9999 [Cui et al.,

2019], where ni is the number of times pixels with intensity i appear in the hidden pixels. For
classification, we use standard cross-entropy loss. To enable joint training, we put equal weight of
0.5 on both task losses and backpropagate through their sum. For both tasks, we put τiΦq∗

i into
the cross-entropy loss as logits, as described in Equation (19). Since mean-field approximation is
(conditionally) unimodal, the scaling grants us the ability to model more extreme distributions. To
achieve faster damped forward-backward iteration, we implement Anderson acceleration [Walker and
Ni, 2011], and stop the fixed point update as soon as the relative difference between two iterations
(that is, ∥qt+1 − qt∥/∥qt∥) is less than 0.01, unless we hit a maximum number of 50 allowed
iterations. For proxαf and the damped iteration, we set α = 0.125 (Although one can tune down α
whenever the iterations do not converge, empirically this never happens on our task).

We use the Adam optimizer with learning rate 0.001. For MNIST, we train for 40 epochs. For
CIFAR-10, we train for 100 epochs using standard data augmentation; during the first 10 epochs, the
weight on the reconstruction loss is ramped up from 0.0 to 0.5 and the weight on the classification
loss ramped down from 1.0 to 0.5; also during the first 20 epochs, the percentage of observation
pixels is ramped down from 100% to 50%.

14

0 2500 5000 7500 10000 12500 15000 17500
Training steps

5

10

15

20

25

30

ite

ra
tio

ns

Backward iterations
Forward iterations

Figure 6: Convergence of forward-backward splitting.

(a) Test data with a 14 × 14 patch masked (b) Imputation with a 14 × 14 patch
masked, inference without injection labels

(c) Imputation with a 14 × 14 patch
masked, inference with injection labels

Figure 7: MNIST pixel patch imputation using mDBM

Deep RBM Training details and hyperparameters The deep RBM is trained using CD-1 algo-
rithm for 100 epochs with a batch size of 128 and learning rate of 0.01.

Convergence of inference during training We note that, comparing to the differently-
parameterized monDEQ in Winston and Kolter [2020], whose linear module suffers from drastically
increasing condition number (hence in later epochs taking around 20 steps to converge, even with
tuned α), our parameterization produces a much nicer convergence pattern: the average number of
forward iterations over the 40 training epochs is less than 6 steps, see Figure 6.

mDBM patch imputation experiments We train mDBM on the task of MNIST patch imputation.
We randomly mask a 14×14 patch, chosen differently for every image, similar to the query training in
Lázaro-Gredilla et al. [2020]. To make the model class richer, we lift the monotonicity constraint, and
find that the model converges regardless. Our model reconstructs readable digits despite potentially
large chunk of missing pixels (Figure 7b). If the model is given the image labels as input injections,
our model performs conditionaly generation fairly well (Figure 7c). These results demonstrate the
flexibility of our parameterization for modelling different conditional distributions.

Deep RBM results using Gibbs sampling The deep RBM is trained as before. For joint imputation
and classification, the DBM uses Gibbs sampling of 10000 and 100 steps respectively, although the
quality of the imputed image and test accuracy are insensitive to the number of steps.

We randomly mask off 60% pixels, or a randomly selected 14× 14 patch; the results are shown in
Figure 8, and are better than when mean-field inference is used, (shown in Figure 3).

In the experiment with 60% of pixels randomly masked, we also test the model on predicting the
actual digit simultaneously. The test accuracy is 93.58%, comparable to the mDBM accuracy of
92.95%.

Comparison of inference methods We conduct numerical experiments to compare our inference
updating method to the ones proposed by Krähenbühl and Koltun [2013], Baqué et al. [2016], denoted
as Krähenbühl’s and Baqué’s respectively. Krähenbühl’s fast concave-convex procedure (CCCP)
essentially decomposes to Equation (11), the un-damped mean-field update with softmax. This update
only converges provably when Φ is concave. Baqué’s inference method can be written as

q
(t)
h = softmax

(
(1− α) log q

(t−1)
h + α(Φhhq

(t−1)
h +Φhoxo + bh)

)
. (20)

15

0 50 100 150 200

0

25

50

75

100

125

150
0 50 100 150 200

0

25

50

75

100

125

150
0 50 100 150 200

0

25

50

75

100

125

150

(a) 60% pixels are randomly masked. From left to right: imputed image, true image, masked image.

0 50 100 150 200

0

25

50

75

100

125

150
0 50 100 150 200

0

25

50

75

100

125

150
0 50 100 150 200

0

25

50

75

100

125

150

(b) 14 × 14 patches are randomly masked. From left to right: imputed image, true image, masked image.

Figure 8: DBM for image imputation using Gibbs sampling

This algorithm provably converges despite the property of the pairwise kernel function. However,
this procedure converges in the sense that the variational free energy keeps decreasing. Therefore
their fixed point may not be the true mean-field distribution Equation (7). In this experiment, we train
the models using three different updating methods, and perform inference using three methods as
well, with and without the monotonicity condition.

We also compare the convergence of our method to the regularized Frank-Wolfe method in Lê-Huu
and Alahari [2021]. Their update step can be written as

q
(t+1)
h = (1− α)q

(t)
h + α softmax

(
1

λ
(Φhhq

(t)
h +Φhoxo + bh)

)
.

We use λ = 0.7 as in their paper. Our method converges faster than the FW method. See the result in
Figure 9.

Figure 9: Convergence of our method vs. the regularized FW. This experiment is done using the same setup as
in Figure 10.

Krähenbühl’s and Baqué’s methods often do not converge in the backward pass (there’s no theoretical
guarantees neither). To rule out the impact of the backward iteration, during training we directly
update use the gradient of the forward pass, instead of using a backward gradient hook to compute
Equation (18). Figure 11 and Figure 12 demonstrate how the three update methods impute miss-
ing pixels when trained with different update rules, with and without the monotonicity condition,

16

Table 2: Relative update residual when monotonicity is not enforced

Train
Inference Krähenbühl Baqué Our

Krähenbühl 0.0005 0.0065 0.0024
Baqué 1.0924 0.0119 0.0042

Our 1.1286 0.0065 0.0022

0.000.020.040.060.080.10
Tolerance (decreasing)

0.000

0.002

0.004

0.006

0.008

0.010

TV
 d

ist
an

ce

(a) TV distance when trained

0.000.020.040.060.080.10
Tolerance (decreasing)

0

10

20

30

40

50

Nu
m

be
r o

f i
te

ra
tio

ns

Our
Baque

(b) Number of iteration till convergence when trained

0.000.020.040.060.080.10
Tolerance (decreasing)

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

TV
 d

ist
an

ce

(c) TV distance at initialization

0.000.020.040.060.080.10
Tolerance (decreasing)

0

5

10

15

20

25

30

35
Nu

m
be

r o
f i

te
ra

tio
ns

Our
Baque

(d) Number of iteration till convergence at initialization

Figure 10: TV distance and convergence speed

respectively. Krähenbühl’s usually does not converge when the model is trained with our method or
Baqué’s, whereas the other two methods impute the missing pixels well. The classification results
are presented in Table 3 and Table 4. Notice that when trained with our method or Baqué’s, the
convergence issue of Krähenbühl’s leads to horrible classification accuracy. Our method is superior
to other inference methods when the model is trained in a different update fashion. For example,
if the model is trained by using Krähenbühl’s, it makes sense that the model performs the best if
the inference is also Krähenbühl’s since the parameters are biased toward that particular inference
method. However, our method in this case outperforms Baqué’s.

After these methods halt and return qT
h , we run one more iteration of

qT+1
h = softmax

(
Φhhq

T
h +Φhoxo + bh

)
, (21)

and record the relative update residual ∥qT+1
h − qT

h ∥/∥qT
h ∥ for randomly selected 4000 MNIST

images. The results are listed in Table 1 and Table 2. To alleviate the effect of numerical issues, we
strength the convergence condition to either the relative residual is less than 10−3 or the number of
iterations exceeds 100 steps.

It appears in Table 1 and Table 2 that although our method has a much lower residual compare to
Baqué’s, both of them seem small and convergent. This is because the “optimal” fixed point in this
setting on MNIST might be unique and both methods happen to converge to the same point. However,
this is in general not true. We compare our method vs Baqué’s on 400 randomly selected MNIST
test images with 40% pixels observed, and perform mean-field update until the relative residual
of [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001] is reached (without step constraint), respectively.
Then we measure the TV distance between the distributions computed by these two methods on the

17

K
rä

he
nb

üh
l

B
aq

ué
O

ur

(a) Krähenbühl (b) Baqué (c) Our

Figure 11: Training and inference using all three update rules with 40% observed pixels with the monotonicity
condition. The labels on each row represent the training update rule, and the labels on the columns represent the
inference update rule.

Table 3: Classification error (standard deviation) when monotonicity is enforced

Train
Inference Krähenbühl Baqué Our

Krähenbühl 0.042 (0.0013) 0.114 (0.0019) 0.0498 (0.0014)
Baqué 0.958 (0.0013) 0.038 (0.0010) 0.034 (0.0012)
Our 0.946 (0.0024) 0.0425 (0.0016) 0.0412 (0.0017)

remaining 60% pixels, as well as the convergence speed. The results are demonstrated in Figure 10.
One can see that when the model is trained (using Krähenbühl’s, Figure 10a), the TV distance
converges to 0 as the tolerance decreases. However, when the model is just initialized (but still
constrained to be monotone), the TV distance remains large (Figure 10c). Even though in this case the
optimal fixed point may be unique, our method is still superior to Baqué’s: it takes us less iterations
till convergence, despite whether the model is trained or not.

18

K
rä

he
nb

üh
l

B
aq

ué
O

ur

(a) Krähenbühl (b) Baqué (c) Our

Figure 12: Training and inference using all three update rules with 40% observed pixels without the monotonicity
condition. The labels on each row represent the training update rule, and the labels on the columns represent the
inference update rule.

Table 4: Classification error (standard deviation) when monotonicity is not enforced

Train
Inference Krähenbühl Baqué Our

Krähenbühl 0.035 (0.0017) 0.189 (0.0023) 0.051 (0.0015)
Baqué 0.762 (0.0013) 0.041 (0.0013) 0.055 (0.0012)
Our 0.90 (0.0002) 0.063 (0.0021) 0.036 (0.0017)

19

	Introduction
	Background and related work
	Monotone deep Boltzmann machines and approximate inference
	A monotone parameterization of general Boltzmann machines
	Mean-field inference as a monotone DEQ
	Practical considerations when modelling mDBMs
	Efficient parallel solving for the mean-field fixed point

	Experimental evaluation
	Conclusion
	Appendix
	Deferred proofs
	Convolution network
	Efficient computation of proxf

	Additional Experiments and Details
	Training methodology
	Details

