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1 Bounding Ellipsoid Projection onto Halfspace

We are interested the projection of an ellipsoid E = E(q,Q) onto a halfspace
H(c, γ) where

E(q,Q) = {x : (x− q)>Q−1(x− q) ≤ 1} and H(c, γ) = {x : x>c ≤ γ}.

To approximate this, we would like to find the min. vol. ellipsoid covering the
projection, E∗ = MVE(ProjH(E)).

There are five cases (see Figure 1). The first two cases are easy:

Case 1 E is entirely inside H. Then

E∗ = MVE(ProjH(E))

= MVE(E)

= E.
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Figure 1: Upper left: Case 2; Upper right: Case 3; Lower left: Case 4; Lower right: Case 5.

Case 2 E is entirely outside H. Then

E∗ = MVE(ProjH(E))

= MVE(ProjHP (E))

= ProjHP (E),

where HP is the hyperplane HP = {x : x>c = γ}. The projection of an ellipsoid
onto a hyperplane is another ellipsoid which can be computed following Fact 2.

Cases 3-5 deal with the scenario when E intersects both H and Hc. We can
borrow techniques from the ellipsoid method [1] for these cases. The cases split
on the value α, the distance from q to the hyperplane HP in the metric defined
by Q (i.e., ‖y‖Q = (y>Q−1y)1/2). We compute α as α = (c>q − γ)/

√
c>Qc.

Note that Case 1 is when α < −1 and Case 2 is when α > 1.
Note that

E∗ = MVE(ProjHP (E ∩Hc) ∪ (E ∩H)).

In Cases 3 and 4, since ProjHP (E ∩Hc) is not an ellipsoid, we will compute an
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over-approximation to E∗. The over-approximation is

Ê = MVE(ProjHP (MVE(E ∩Hc)) ∪ (E ∩H)).

Case 3 E intersects H and Hc and 1/n < α < 1. Then MVE(E ∩Hc) = E,
i.e. there is no ellipsoid smaller than E itself which covers it’s intersection with
H (See Prop. ?? TODO), so

Ê = MVE(ProjHP (MVE(E ∩Hc)) ∪ (E ∩H))

= MVE(ProjHP (E) ∪ (E ∩H)).

This can be computed using Theorem 1.

Case 4 E intersects H and Hc with−1/n < α < 1/n. Then MVE(E∩Hc) 6=
E as for Case 3, but MVE(E ∩ Hc) can be computed following the ellipsoid
method (Fact 7). So Ê can be computed in a method similar to Case 3, given
in Theorem 2.

In the final case, it is no longer easy to compute Ê, so we comnpute a
covering ellipsoid which is not the MVE.

Case 5 E intersects H and Hc and −1 < α < −1/n. Then we compute Ê′

which contains ProjHP (MVE(E ∩Hc)) ∪ (E ∩H) using Theorem 3.

2 Ellipsoid Updates

The updates to ellipsoid matrix Q can all be represented in the form

ρv1v
>
1 + φ(I − v2v>2 )(ψv3v

>
3 + ωQ)(I − v2v>2 )

where constants ρ, φ, ψ, ω and vectors v1, . . . , v3 are given in Tables ?? and ??.
Notation used in the tables:

δ(x) := (1− x2)n2/(n2 − 1)

σ(x) := 2(1 + nx)/((n+ 1)(1 + x))

τ(x) := (1 + nx)/(n+ 1)

s :=
√
c>Qc

H := I − cc>

Case ρ φ ψ ω

1 0 1 0 1
2 0 1 0 1
3 δ(0)(1− σ(0)) δ(0) 0 1
4 δ(0)(1− σ(0)) δ(0) −δ(−α)σ(−α)/(c>Qc) δ(−α)
5 1/(1− α)2 1/(1− α2) −δ(−α)σ(−α)/(c>Qc) δ(−α)
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Case v1 v2 v3

1 0 0 0
2 0 c 0
3 (c>q − s− γ)c−HQc/s c 0
4 q −Qc/s−H(q + τ(−α)Qc/s)− γc c Qc
5 q −Qc/s−H(q + τ(−α)Qc/s)− γc c Qc

The updates for the center q are given in Table ??.

Case new q

1 q
2 Hq + γc
3 Hq + γc+ τ(0)v1
4 H(q + τ(−α)Qc/s) + γc+ τ(0)v1
5 H(q + τ(−α)Qc/s) + γc− αv1/(1− α)

3 Method for Case 3

Algorithm 1 Case 3

Input: ellipsoid matrix Q, ellipsoid center q, halfspace normal c, halfspace bias
γ, dimension n
s ←

√
c>Qc . s is required to compute α so could be passed in

` ← c>q − s− γ
H− ← I − cc>
z ← `c−H−Qc/s . Qc is required to compute α so could be passed in
q′ ← H−q + γc
σ ← 2/(n+ 1)
δ ← n2/(n2 − 1)
τ ← 1/(n+ 1)
q′′ ← q′ + τz
Q′ ← δ((1− σ)zz> +H−QH−)
return q′′, Q′

See Algorithm 3. In Case 3, we want the MVE covering both the intersec-
tion E ∩H and the projection ProjHP (E). Theorem 1 gives an algorithm for
computing it. Here we describe the idea of the algorithm corresponding to the
steps in Theorem 1. See Figure 3.

• (Steps 1-3) Compute the projection of E onto the hyperplane HP which
divides H and Hc. The projection is a new (n− 1)-dimensional ellipsoid
B = E(q′, Q′).

• (Steps 4-7) As a consequence of the ellipsoid method (Fact 7), the MVE
of E ∩H, denoted A, is tangent to E at a point r. Modify the projection
B into an n-dimensional ellipsoid E′ such that E′ ∩ HP = B and E′ is
also tangent to E and A at r.
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Figure 2: Steps for Case 3 method.

• (Step 7) We can show that the desired ellipsoid Ê is the MVE of the
intersection of E′ withH. This can be computed following the the ellipsoid
method (Fact 7).

Note that we only care to do this computation when 1/n < α < 1, but the
theorem applies to a wider range of α.

Theorem 1. Let ellipsoid E = E(q,Q) and halfspace H = {x : c>x ≤ γ}.
Let ProjHP denote orthogonal projection onto HP = {x : c>x ≤ γ}, where
‖c‖2 = 1. If −1 < α < 1 then we can compute an ellipsoid Ê′ which contains
(E ∩H) ∪ ProjHP (MVE(E ∩Hc) as follows:

1. Let P be the projection matrix defined in Fact 2.

2. Let q′ = PP>(q − γc) + γc. and Q′ = PP>QPP>.

3. The projection ProjHP (E) is B = E(q′, Q′).

4. Let r = q−Qc/
√
c>Qc and ` = −‖r−(PP>(r−γc)+γc)‖ and s = q′+`c.

5. Let S be the shear matrix mapping s to r as given in Fact 5:

S = I + c((r − q′)− (s− q′))>/((s− q′)>c).

6. Let Y = `2cc> +Q′ and define the un-sheared ellipsoid C = E(q′, Y ).
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7. Let Z = S>Y S and define E′ = E(q′, Z). TODO: why S transposed?

8. The MVE Ê is the minimum volume ellipsoid for the intersection of E′

and H, as computed using Fact 7.

The proof relies on facts from Section 7 and the following propositions:

Proposition 1. Let E be an axis-aligned ellipsoid E = E(0, diag(λ)) with λ1 =
1, and a family of parallel hyperplanes HPγ = {x : x>e1 = γ}. The intersection
E ∩HP0 is an also an ellipsoid. Denote it’s ellipsoid matrix by Q0. Then for
−1 < γ < 1 the ellipsoid E ∩HPγ is similar, with matrix for Hγ = (1− γ2)Q0.

Proof. E ∩HP0 is an ellipsoid defined by

n∑
i=2

x2i
λi
≤ 1

and E ∩HPγ is defined by

n∑
i=2

x2i
λi

+ γ2 ≤ 1 =⇒
n∑
i=2

x2i
(1− γ2)λi

≤ 1.

So

Qγ = diag(
1

(1− γ2)λ[2:]
)−1 = (1− γ2)diag(λ[2:]) = (1− γ2)Q0.

Proposition 2. Given ellipsoid E = E(q,Q), define

p∗ = max
x∈E

‖x‖ and p∗δ = max
x∈Eδ

‖x‖

where Eδ = E(δq,Q) for some 0 ≤ δ ≤ 1. If p∗ ≤ 1 then p∗δ ≤ 1.

Proof. Let a solution to the first maximization be x∗ and the other be x∗δ .
First, we show that there is a solution x∗ = q+ y∗ such that 0 ≤ q>y∗ (and the
same holds for x∗δ). To see this, note that ellipsoids are symmetric about any
hyperplane through the center: If q+ y ∈ E then q− y ∈ E. Therefore, for any
y with q + y ∈ E such that q>y ≤ 0, then q − y ∈ E, and 0 ≤ q>(−y), and

‖q + y‖2 = q>q + 2y>q + y>y

≤ q>q − 2y>q + y>y

= ‖q − y‖2.

Next, we note that for any vector q + y such that 0 ≤ q>y, we have

‖δq + y‖2 = δ2q>q + 2δq>y + y>y

≤ q>q + 2q>y + y>y

= ‖q + y‖2.

Since the norm of all vectors that could be the optimal solution decrease in Eδ,
the norm of the optimal solution x∗δ must decrease.
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Figure 3: Steps for Case 4 method.

4 Method for Case 4

The method for Case 4 is similar to that for Case 3, but the MVE of E ∩Hc is
no longer E itself when −1/n < α. Instead we compute M = MVE(E ∩Hc)
and then follow the steps of Theorem 1 with M in place of E. See Figure 4.

Theorem 2. Let ellipsoid E = E(q,Q) and halfspace H = {x : c>x ≤ γ}.
Let ProjHP denote orthogonal projection onto HP = {x : c>x ≤ γ}, where
‖c‖2 = 1. If −1 < α < 1/n then the min. volume ellipsoid Ê containing
(E ∩ H) ∪ ProjHP (MVE(E ∩ Hc)) is constructed as follows: First let M =
E(qm, Qm) = MVE(E ∩ Hc) as computed using Fact 7. Follow the steps of
Theorem 1 but replacing q with qm and Q with Qm.

5 Method for Case 5

The approach taken for Case 3 and 4 is not applicable to Case 5. For Case 3,
we found an ellipsoid E′ passing through the projection B and the point r. We
then could use the ellipsoid method update to find Ê, the MVE covering E′ and
the point r.

In order to show that Ê contains E ∩H, we needed the following fact from
the proof of the ellipsoid method found in [1]: For −1/n < α, the MVE which
contains ProjHP (E) and r also contains MVE(E ∩H). This is no longer true
when α < −1/n, in which case the MVE containing E ∩H is E itself (See Prop
?? TODO).
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Figure 4: Steps for Case 5 method.

We can however find the ellipsoid Ê′ that passes through through the pro-
jection ProjHP (MVE(E ∩Hc)) and is tangent to the same hyperplane as E at
r, and which has the same α as E. We can show that E ∩H ⊆ Ê′. See Figure
5. The method is similar to that of the other cases, but instead of computing C
with α = 0, here C has the same α as E. And instead of computing the MVE
for E′ ∩H, the desired ellipsoid is E′ itself, (here denoted Ê′).

Theorem 3. Let ellipsoid E = E(q,Q) and halfspace H = {x : c>x ≤ γ}.
Let ProjHP denote orthogonal projection onto HP = {x : c>x ≤ γ}, where
‖c‖2 = 1. If −1/n < α < 1 then the min. volume ellipsoid Ê containing
(E ∩H) ∪ ProjHP (E) is constructed as follows:

1. Let M = M = E(qm, Qm) = MVE(E ∩Hc) as computed using Fact 7.

2. Let P be the projection matrix defined in Fact 2.

3. Let q′1 = PP>(qm − γc) + γc. and Q′ = PP>QmPP
>.

4. The projection ProjHP (MVE(E ∩Hc)) is B = E(q′1, Q
′).

5. Let r = q −Qc/
√
c>Qc and ` = −‖r − (PP>(r − γc) + γc)‖/(1− α).

6. Let q′2 = q′1 − α`c and s = q′2 + `c.

7. Let S be the shear matrix mapping s to r as given in Fact 5:

S = I + c((r − q′)− (s− q′))>/((s− q′)>c).

8. Let Y = `2cc> + Q′/(1 − α2) and define the un-sheared ellipsoid C =
E(q′2, Y ).
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9. Let Z = S>Y S and q′3 = S(q′2−q′1)+q′1 and define Ê′ = E(q′3, Z). TODO:
why S transposed?

Proof. TODO

6 Efficient Computation Using Factored Matri-
ces

Rather than keeping track of the ellipsoid matrix Q through a network, we can
keep track of A such that Q = AA>. This improves numerical stability (forcing
Q to be PSD), and reduces the number of matrix multiplications required. This
factorization can be maintained through the projections, and all the matrix
multiplications required for halfspace projections can be computed as matrix-
vector multiplications:

• The projection matrix is of the form P =
(
I − 2

‖a‖2 aa
>
)
[:,2:]

, so A>P can

be done with matrix-vector multiplication.

• The computations required in Step 6 of Theorem 1 can be done using the
factor only: We need B such that BB> = `cc> +AA>, which is given by
B = [`c>;A].

• The sheering matrix S is of the form I + xy> for vectors x, y, so A>S is
matrix-vector.

• Calculating MVEs following the ellipsoid method (Fact 7) involves com-

puting Qc/
√
c>Qc and Q − σQc(Qc)>/(c>Qc). Both can be done with

only matrix-vector multiplications. The later can be done in factored form
as follows:

– Q − σQc(Qc)>/(c>Qc) = A(I − σxx>)A> where x is a normalized
vector.

– Using Fact 2 we can get an orthonormal matrix U =
[
c v2 . . . vn

]
.

– I − xx> = UDU> where D is the identity matrix with first entry
1− σ.

– Then A(I−σxx>)A> = BB> where B = AUD1/2 (we know σ < 1).

Applying an FC layer with weight matrix W to the ellipsoid gives an ellipsoid
with matrix WQW>, so we update the factor as WA. Similarly, convolutions
can be applied directly to the A matrix.

Conceivably, the entire forward pass can be done with just vector-vector
multiplications, except for the convolutions and FC layers. If A is just being
updated to A>(I + xy>), we can store a chain e.g.

A>out = A(I + x0y
>
0 )(I + x1y

>
1 )W . . . (I + xky

>
k ),
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where W is a convolution or FC weight matrix. We maintain the chain in un-
computed form until we compute the loss after the last layer, at which point we
collapse the chain. The loss is A>outc for some vector c, so we first compute y>k c,
then c+ xk(y>k c), etc, occasionally applying convolutions or FC layers.

7 Facts

Fact 1.
AE(q,Q) + b = E(Aq + b, AQA>)

Fact 2. The orthogonal projection of x onto hyperplane H = {x : c>x = 0},
expressed in terms of an orthonormal basis for H, is given by P>x where

P =

(
I − 2

‖a‖2
aa>

)
[:,2:]

and a = c
‖c‖ −e1. Also the first column which is ommited from the above matrix

is c.

Fact 3. The orthogonal projection of x onto hyperplane H = {x : c>x = 0},
expressed in terms of the original basis, is given by PP>x.

Fact 4. The orthogonal projection of x onto hyperplane c>x = γ, expressed in
terms of the original basis, is given by

f(x) = PP>(x− γc) + γc.

Fact 5. Suppose the line pq is parallel to the hyperplane HP = {x : x>c = 0}.
The sheer matrix that maps p to q while leaving HP fixed is

S = I + c(q − p)>/(p>c).

(VanArsdale via http: // www. silcom. com/ ~ barnowl/ HTransf. htm )

Fact 6 ( [1]). If −1/n ≤ α < 1, then the minimum volume ellipsoid covering
the intersection of E(0, I) with H = {x : e>1 x ≤ −α} is

E(−τe1, δ(I − σe1e>1 ))

where

τ = (1 + nα)/(n+ 1),

σ = 2(1 + nα)/((n+ 1)(n+ α)),

δ = (n2/(n2 − 1))(1− α2).

Fact 7 ( [1]). Let α = (c>q − γ)/
√
c>Qc. If −1/n ≤ α < 1 then the minimum

volume ellipsoid covering the intersection of E(q,Q) with H = {x : c>x ≤ γ} is

E(q − τ(Qc/
√
c>Qc), δ(Q− σQc(Qc)>/(c>Qc)))

where τ, δ, σ are as above with α = (c>q − γ)/
√
c>Qc.
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Fact 8 ( [1]). If −1/n ≤ α ≤ −1/n then the minimum volume ellipsoid covering
the intersection of E = E(q,Q) with H = {x : c>x ≤ γ} is E itself.

Fact 9. Affine transformations map lines to lines, and parallel lines to parallel
lines.

Fact 10. If f is affine, and ‖f(x)− f(y)‖ < ‖x− y‖, then for all x′, y′ on the
line xy we have ‖f(x′)− f(y′)‖ < ‖x′ − y′‖.

Fact 11. The maximum of c>y over E(q,Q) is

c>q + c>Qc/
√
c>Qc.

(https: // math. stackexchange. com/ questions/
1832467/ maximizing-a-linear-function-over-an-ellipsoid )

Fact 12. The principle axes of E(q,Q) are the eigenvectors of Q and the lengths
of the semiaxes are the square roots of corresponding eigenvalues.

References

[1] Robert G Bland, Donald Goldfarb, and Michael J Todd. The ellipsoid
method: A survey. Operations research, 29(6):1039–1091, 1981.

11


