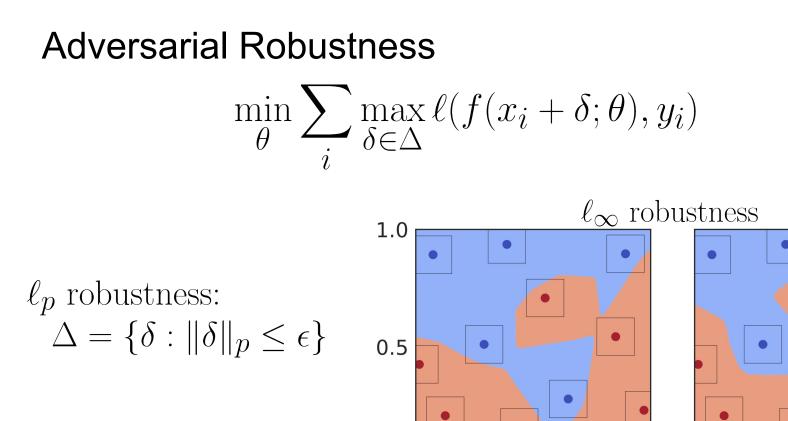
Provable adversarial ℓ_2 robustness by propagating ellipsoids

Ezra Winston with Eric Wong

Summary

- Background: adversarial ℓ_2 robustness
- Ellipsoid Propagation
- Current Results
- Next Step: Efficient Computation?



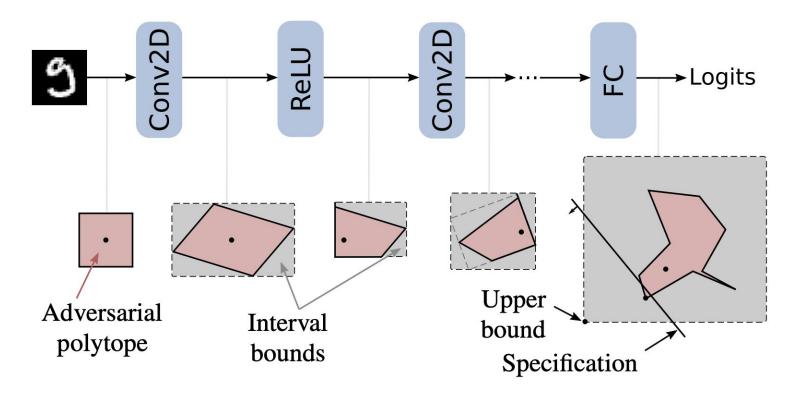
0.0

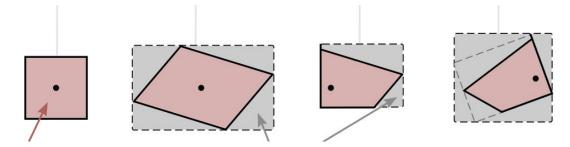
0.5

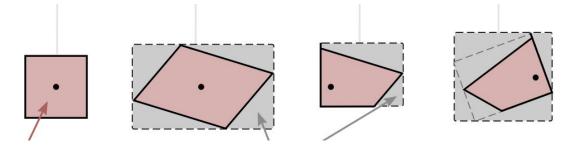
1.0 0.0

1.0

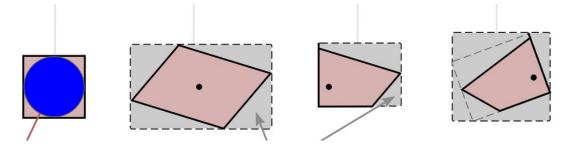
0.5



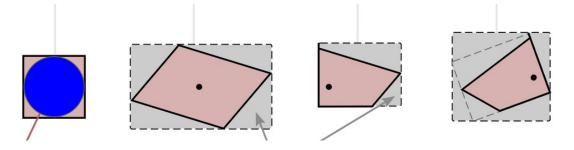




• Doesn't maintain correlations



- Doesn't maintain correlations
- Obviously doesn't work for ℓ_2 balls -- converts to ℓ_∞



- Doesn't maintain correlations
- Obviously doesn't work for ℓ_2 balls -- converts to ℓ_∞
- Dual LP method of Wong et al. also relies on interval bounds on ReLU activations

ℓ_∞					
Dataset	Epsilon	Robust Error	Standard Error		
MNIST	0.1	3.67%	1.08%		
CIFAR10	2/255	46.11%	31.28%		

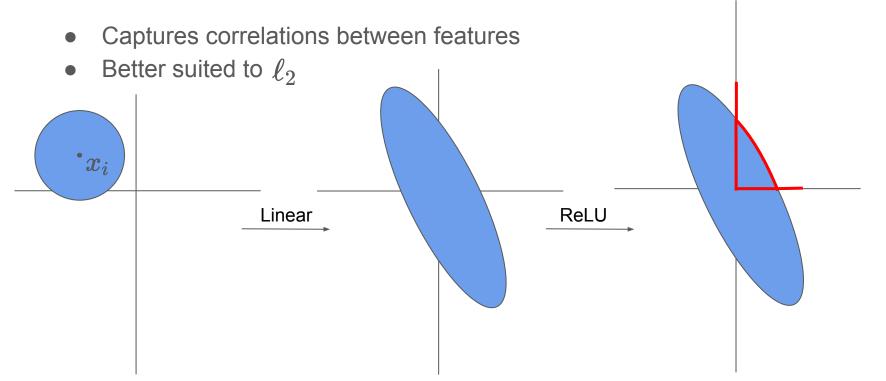
Dataset	Epsilon	Robust Error	Standard Error
MNIST	1.58	55.47%	11.86%
CIFAR10	36/255	48.04%	38.80%

Summary

- Background: adversarial ℓ_2 robustness
- Ellipsoid Propagation
- Current Results
- Next Step: Efficient Computation?

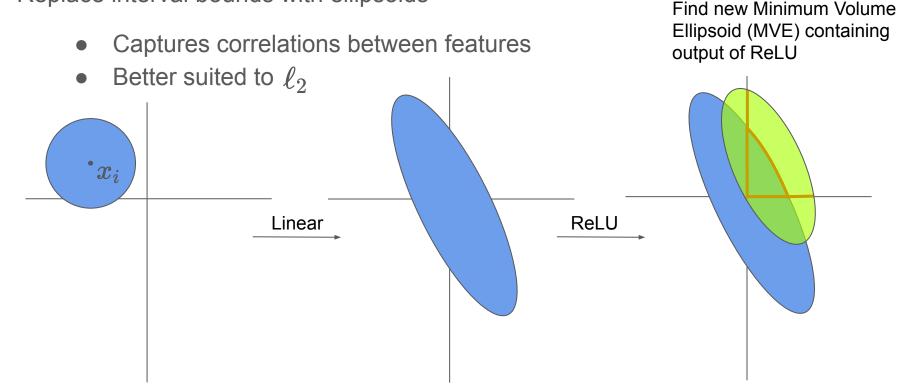
Ellipsoid Propagation

Replace interval bounds with ellipsoids



Ellipsoid Propagation

Replace interval bounds with ellipsoids



Halfspace projection

Problem: How to find Minimum Volume Ellipsoid (MVE) containing projection of ellipsoid after ReLU?

Instead: Use different nonlinearity consisting of projection onto a single halfspace.

• ReLU is projection onto each axis-aligned halfspace

$$\max(0, x) = \operatorname{proj}_{z: z^T e_m \ge 0} \left(\dots \operatorname{proj}_{z: z^T e_1 \ge 0} (x) \right)$$

 Reasonable performance on MNIST with much fewer than m projections

n	MNIST error		
1	5.1%	_	
5	2.5%		
10	2.0%	m:	hidden dim = 6256
50	1.4%	n:	num halfspaces

Ellipsoid Propagation

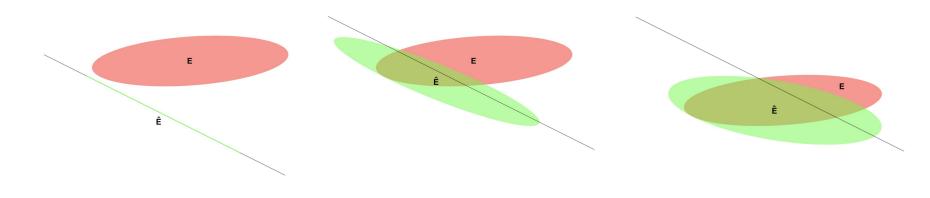
Ellipsoid with center q and PSD matrix Q:

 $\mathcal{E}(x_i, I)$

- Start with ℓ_2 ball which is
- Linear layer propagation
- Projection onto halfspace H

$$\mathcal{E}(q,Q) = \{x : (x-q)^{\top}Q^{-1}(x-q) \le 1\}$$

$$A\mathcal{E}(q,Q) + b = \mathcal{E}(Aq + b, AQA^{\top})$$



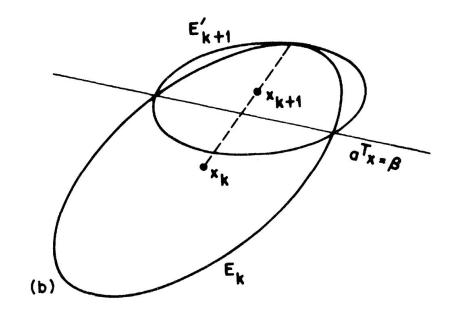
 $MVE(Proj_H(\mathcal{E}))$

Ellipsoid Method: Classic method for solving system of linear inequalities using a sequence of ellipsoids

• We just use the fact that it gives an efficient way to compute $MVE(\mathcal{E}\cap H)$

as a rank-one update $\boldsymbol{Q} \leftarrow \boldsymbol{Q} - \boldsymbol{a} \boldsymbol{a}^\top$

• This will help us compute $MVE(Proj_{H}(\mathcal{E}))$



Want $\begin{aligned} \mathcal{E}^* &= MVE(Proj_H(\mathcal{E})) \\ &= MVE(Proj_{HP}(\mathcal{E} \cap H^c) \cup (\mathcal{E} \cap H)) \end{aligned}$

Part of ellipsoid already in H

$$\begin{array}{ll} \text{Want} & \mathcal{E}^* = MVE(Proj_H(\mathcal{E})) & \swarrow \\ & = MVE(Proj_{HP}(\mathcal{E} \cap H^c) \cup (\overline{\mathcal{E} \cap H})) \\ & \swarrow \\ & \swarrow \\ & \text{Projection of part of ellipsoid not in H} \\ & \text{onto the dividing hyperplane HP} \end{array}$$

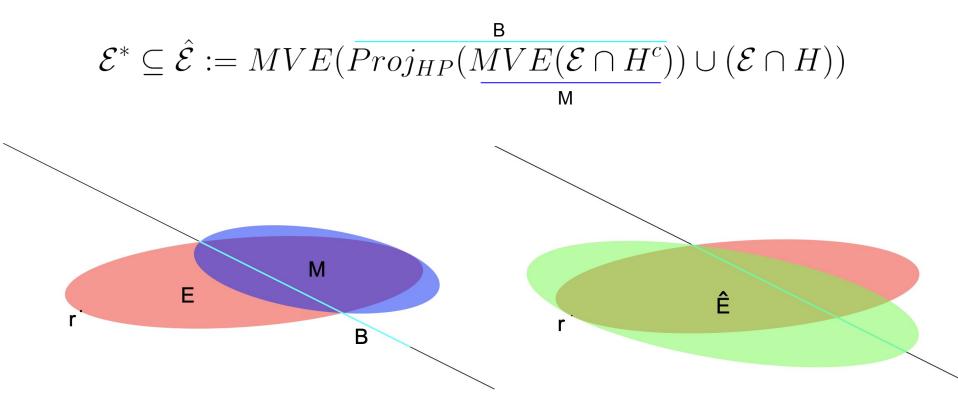
Part of ellipsoid already in H

Want
$$\mathcal{E}^* = MVE(Proj_H(\mathcal{E}))$$

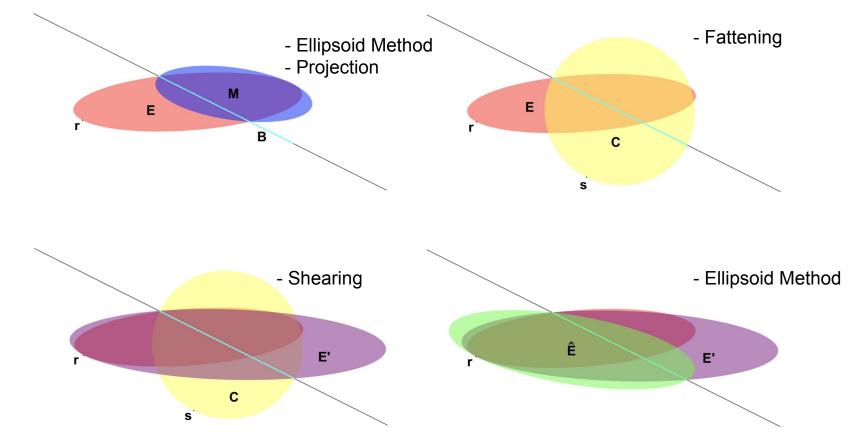
= $MVE(Proj_{HP}(\mathcal{E} \cap H^c) \cup (\overline{\mathcal{E} \cap H}))$
/
Projection of part of ellipsoid not in H
onto the dividing hyperplane HP

Approximate $\mathcal{E} \cap H^c$ by ellipsoid $MVE(\mathcal{E} \cap H^c)$, which is easy to project onto HP and easy to compute with Ellipsoid Method

$$\mathcal{E}^* \subseteq \hat{\mathcal{E}} := MVE(Proj_{HP}(MVE(\mathcal{E} \cap H^c)) \cup (\mathcal{E} \cap H))$$



Closed-form computation

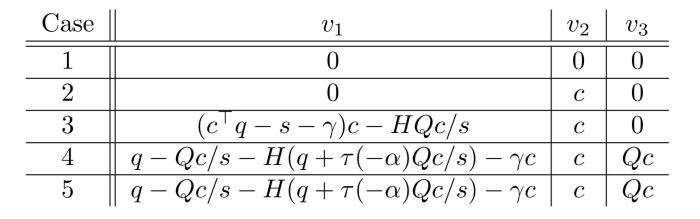


Updates have simple form

The updates all have simple forms. New Q is

$$\rho v_1 v_1^{\top} + \phi (I - v_2 v_2^{\top}) (\psi v_3 v_3^{\top} + \omega Q) (I - v_2 v_2^{\top})$$

Case depends on value of Qc, where c is the halfspace normal vector. Qc then needs to be computed at each halfspace



Summary

- Background: adversarial ℓ_2 robustness
- Ellipsoid Propagation
- Current Results
- Next Step: Efficient Computation?

Current results

- We can train an MNIST network using dual LP method, then verify with ellipsoids *and obtain same certified accuracy* as dual verification.
- Like dual method, ellipsoids unable to verify PGD-trained network since bound becomes too loose with many halfspace crossings.
- Using ellipsoid propagation during training performs better than dual network on MNIST.

Method	Robust Error	Standard Error
Dual LP	55.47%	11.86%
Ellipsoids	42.50%	4.36%

Summary

- Background: adversarial ℓ_2 robustness
- Ellipsoid Propagation
- Current Results
- Next Step: Efficient Computation?

Next step: Efficient Computation?

$$\rho v_1 v_1^{\top} + \phi (I - v_2 v_2^{\top}) (\psi v_3 v_3^{\top} + \omega Q) (I - v_2 v_2^{\top})$$

For hidden dim = n, number of halfspaces = k

- Naive implementation: O(k n^2)
 - For each halfspace update Q using matrix-vector multiplication
- Current implementation: O(k^2 n)
 - Keep Q as chain of operations, only collapses when computing Qc at each halfspace
 - Only vector-vector multiplications
 - At halfspace j, collapse chain of length j-1
- Scaling to CIFAR10
 - Approx. updates done over whole ReLU in parallel? Matrix sketching? Dual SDP?