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Abstract

Modern Question Answering (QA) systems rely on both
knowledge bases (KBs) and unstructured text corpora as
sources for their answers. While KBs generally offer more
precise answers than unstructured text, they do not cover all
domains and the cost of constructing them in novel domains
is high. In this paper we consider a third setting: QA using
text and semi-structured knowledge, in the form of a cor-
pus of entity-labeled documents. We propose CASE, a hy-
brid of an RNN language model and an entity co-occurrence
model, where the entity co-occurrence model is learned
from the entity-labeled corpus. We test the model on several
cloze (fill-in-the-blank) QA datasets: QUASAR-S, a corpus of
tagged posts from Stack Overflow; SPADES, a dataset entity-
linked to Freebase; and three new datasets we collect from
community-QA websites analogous to QUASAR-S (and make
publicly available). On all benchmarks, the proposed model
shows large accuracy gains over strong baselines that do not
incorporate a KB; where a KB is available, the model is com-
petitive with the state-of-the-art KB-based method, despite
using only semi-structured knowledge.

1 Introduction
Factoid QA is the task of providing short factual answers to
questions posed in natural language. Recent systems for fac-
toid QA typically use either Knowledge-Bases (KBs) (Yu
et al. 2017; Bordes et al. 2015; Bordes, Chopra, and We-
ston 2014; Yih et al. 2015; Berant et al. 2013), unstructured
text (Chen et al. 2017; Dhingra, Mazaitis, and Cohen 2017;
Wang et al. 2017a; 2017b), or both (Das et al. 2017;
Gardner and Krishnamurthy 2017; Xu et al. 2016a; 2016b).
While KB approaches benefit from structured information,
QA tasks which require domain-specific knowledge present
a unique challenge since relevant knowledge bases are often
lacking (Dong et al. 2014). Text-based approaches which
query unstructured sources have improved greatly with re-
cent advances in machine reading and comprehension, but
effective combination of search and reading systems is an
active research challenge (Chen et al. 2017).

Semi-structured text offers a promising source of knowl-
edge for QA tasks which lack relevant KBs. This paper fo-
cuses on answering cloze (fill-in-the-blank) questions us-
ing semi-structured knowledge consisting of a background
corpus of documents d each tagged with context entities c.
We introduce a new task, QA with context entities, which

Question

Tag cq django
Sentence q django is an open-source web application

framework written in
Answer a python

Post Excerpt

Tags c django, subprocess, wsgi
Sentence d So how can I maximize performance in python

for this kind of scenario?
Answer a python

Figure 1: Example from QUASAR-S. Questions are clozes con-
structed from Stack Overflow tag definitions. The background cor-
pus contains excerpts from tagged posts.

is well-suited to make use of such background corpora.
For this task, in addition to the standard question sen-
tence q and answer entity a, there is a set of context en-
tities cq about which the question is asked. For example,
QUASAR-S (Dhingra, Mazaitis, and Cohen 2017) consists
of cloze-style questions about computer programming, col-
lected from the community-QA website Stack Overflow.
Each question q is derived from a definition of software en-
tity cq , and the answer is another software entity a (Figure 1,
(top)). The dataset also includes a large background corpus
of community-generated posts; users have tagged each post
d with a set of context entities c, and potential answer enti-
ties a within documents have been automatically annotated
(Figure 1, (bottom)).

To our knowledge, ours is the first work exploring the QA
with context entities task. However, this task occurs often in
practical settings. Beyond the community-QA setting such
as Stack Overflow that we focus on, other examples include
customer questions in the context of a particular product, or
questions posted by an editor in the context of a particular
Wikipedia page. Also, as we demonstrate on the SPADES
dataset, general QA tasks can be viewed as an instances of
this task, whenever potential context entities can be identi-
fied in the question by entity-linking methods.



To effectively leverage such semi-structured information,
we propose CASE (Context-Adjusted Syntax Embeddings),
a hybrid of a recurrent neural network language model
(RNN-LM) P (a|q) that predicts an answer entity a from
the surrounding question text, and a co-occurrence model
P (a|cq) which predicts a from the context entities. We test
several instantiations of this framework, and find that a sim-
ple context model based on co-occurrence statistics per-
forms best.

CASE obtains state-of-art results on QUASAR-S, out-
performing both search-and-read methods and an RNN-LM
baseline. To understand why, we analyze the predictions of
each component and the output embeddings of the RNN-LM
component. Our analysis demonstrates a useful division of
labor: the RNN-LM picks out the “type” of the answer entity
based on question syntax, while the context model picks out
the semantically meaningful entity based on co-occurrence
counts.

While CASE is tailored for cases where no KB is avail-
able, we demonstrate that it can perform well on general
cloze QA tasks as well, when context entities can be ex-
tracted from question sentences. This allows us to compare
CASE with existing methods for cloze QA that rely on KBs.
We evaluate on SPADES (Bisk et al. 2016), a dataset tailored
for QA using Freebase (Bollacker et al. 2008). SPADES con-
sists of cloze questions from sentences containing two or
more Freebase entities (Figure 3). We treat all entities in
question q as context entities cq , and create a background
corpus from the training questions by treating each as a doc-
uments d with the Freebase entities it contains as context
c. Using only this small, semi-structured knowledge source,
CASE is competitive with a state-of-the-art method which
uses Freebase.

To summarize, our contributions are as follows. (1) We
introduce the QA with context entities task and propose
CASE, a hybrid language/context model for this task. (2)
We show that CASE outperforms RNN-LM and “search-
and-read” baselines, improving the previous state-of-the-art
accuracy on QUASAR-S by more than 11%, and we com-
pare several instantiations of CASE of varying complex-
ity, and show that a simple, easy-to-implement model per-
forms best on multiple benchmarks. (3) We demonstrate
that on the SPADES dataset, where no background text cor-
pus is available, CASE still obtains results comparable to
(2.7% less than) state-of-the-art KB methods, using only
co-occurrence data derived from the training corpus; com-
bining CASE with the previous state-of-the-art further im-
proves accuracy. (4) We release three new datasets similar to
QUASAR-S, constructed from smaller community QA sites
Math Exchange, TeX Exchange, and English Exchange, and
show that CASE outperforms LM baselines in all cases. (5)
Finally, we provide qualitative analysis of the entity embed-
dings produced by CASE, showing that they more faithfully
capture entity “type” information.

2 Background
Problem Definition
Prior work has focused on QA given a KB, document, or
document corpus. Here, we focus on incorporating semi-
structured data that comes in the form of context entities,
in settings where no KB is available. In particular we fo-
cus on cloze-style QA and refer to this task as Cloze QA
with context entities. A cloze question q is of the form
w1, . . . , blank , . . . wn and the task is to identify the an-
swer entity a ∈ A from answer vocabulary A which re-
places blank . For our task, each question q is also ac-
companied by a set context entities cq . To answer these
question, we are given a semi-structured corpus consisting
of (context entities, document) pairs, S = {(c, d)}, where
c = {c1, . . . , cm} is a set of context entities. In this paper,
we also assume that some documents d contain annotated
entities from the answer vocabulary A. An instance of the
task is a tuple (q, cq, a, S) where a is the correct missing
entity, and we wish to model P (a|q, cq, S). Figure 1 shows
how these variables are instantiated for QUASAR-S.

Related tasks
Past work has studied several variants of question-answering
(QA). In knowledge-based QA (KB QA) the goal is to model
P (a|q,K), the probability of answer a given question q
and KB K. In Reading comprehension (RC) one models
P (a|q, d), the probability of answer a given q and a doc-
ument d containing the answer. RC systems can be extended
to more general tasks in the search and read setting, where
one models P (a|q,D), the probability of a given question
q and document corpus D = {d1, . . . , dN} (where D may
come from a search engine). These problems all relate to QA
with context entities, which uses a model P (a|q, cq, S) that
predicts the probability of a given question q, context en-
tities cq , and an entity-tagged corpus S = {(c, d)}. Cloze
QA can also be approached as language modeling where,
given a sequence s = w1, . . . , wk−1 (and sometimes also
s′ = wk+1, . . . wK), one models P (wk|s).

3 CASE Models
We propose to use a language model f(q, a) ∝ P (a|q)
together with a context-entity model g(c, a) ∝ P (a|c) to
model answer probabilities P (a|c, q). We make an indepen-
dence assumption similar to that of Naive Bayes, modeling
the question and context entities as independent given the
answer:

P (q, c|a) = P (q|a)P (c|a).
This allows us to model the LM and the context-entity model
separately and leads to the predictive distribution

P (a|q, c) ∝ P (a|q)P (a|c)/P (a)
∝ f(q, a)g(c, a)/P (a).

The best-performing model in our experiments is CASE-
CC. We instantiate f as a bidirectional GRU network (Bi-
GRU) following Dhingra, Mazaitis, and Cohen (2017). Let
W1 ∈ RH×V be a word embedding matrix where V is the



size of question word vocabulary V and H is the embed-
ding dimension. Let W2 ∈ RA×2H be the output answer
embedding matrix where A is the size of answer vocabulary
A. For predicting the entity at answer index i in question
q = w1, . . . , wK we concatenate the forward and backward
GRU outputs at that index:

x = [W1w1, . . . ,W1wK ]

h = [fGRU(x)i−1, bGRU(x)i+1]

log(f(q, ·)) =W2h

where the wk are one-hot encoded and fGRU(x) and
bGRU(x) are the sequential outputs of the forward and
backward GRUs.

For the context model g we use unsmoothed Co-
occurrence Counts calculated from the entity-labeled train-
ing set. Specifically, given context entities c = {c1, . . . , cm}
we compute

g(c, a) = avgi#(a, ci)/#(ci).

In other words, for each context entity, we compute the em-
pirical probability of co-occurrence with the answer entity,
and then average over context entities in the context entity
set. Finally, answer predictions are

P (·|q, c) = σ (log(f(q, ·))− log(g(c, ·))− b)
∝ f(q, ·)g(c, ·)/ exp(b)

where b is a learned bias and σ denotes softmax. While the
LM f learns to predict the answer based on the surround-
ing sentence, the context model g makes predictions based
on context entities. This division of labor allows the LM to
focus more on local syntactic features while relying on the
context model for topical/semantic information.

We also experimented with several alternative entity
context models g. For the CASE-AE model, we let
log(g(c, ·)) = avgiWci, the Average of context entity
Embeddings, where the ci are one-hot encoded and W is a
learned context entity embedding matrix. We also evaluated
a context model based on the self-attentional Set Encoder
suggested by Vinyals, Bengio, and Kudlur (2015) for encod-
ing unordered sets. We call this model CASE-SE. Specifi-
cally,

qt = GRU(q∗t−1)

di,t = 〈Wci, qt〉
ai,t = σ(d·,t)

rt =
∑

i
ai,tci

q∗t = [qt rt]

log(g(c, ·)) =Wq∗m
where this process is repeated for t = 0, . . . ,m steps, i.e.
we take a number of self attention steps equal to the number
of context entities.

4 Experiments
Datasets
We conduct experiments on several datasets. QUASAR-S
and the new STACKEX datasets, which we created, contain
background corpora of unstructured text, and also context
that can be used to inform the entity-context model. To com-
pare with methods that explicitly use a KB, we also evaluate
performance on SPADES, where questions are designed to be
answerable using Freebase. Table 1 shows dataset statistics.

MATHEX

the z-transform is a discrete analogue to the laplace-transform
in that it maps a time domain signal into a representation in
complex frequency plane

TEXEX

align is an environment provided by math packages that permits
multiple related equations to be aligned at a common reference
point

ENGLISHEX

hyperbaton is any deliberate and dramatic departure from stan-
dard word-order

Figure 2: Examples from STACKEX. Context entities are shown
in bold, answer entities underlined.

QUASAR-S (Dhingra, Mazaitis, and Cohen 2017) A large
cloze-style QA dataset created from the website Stack Over-
flow (SO), consisting of questions and a background corpus
in the computer programming domain. QUASAR-S has the
unique feature of requiring deep domain expertise in soft-
ware, a domain without a rich KB, making it challenging for
KB QA. Neither human experts in a closed-book setting (i.e.
without access to the background corpus) nor human non-
experts in an open-book setting (i.e. with search access to
the background corpus) can answer more than 50% of ques-
tions, probably because even domain experts are not familiar
with all SO topics. However, Dhingra, Mazaitis, and Cohen
(2017) note that this is not necessarily an upper bound for
automated systems, which could access more background
knowledge than any one individual. The difficulty of the
task is emphasized by the fact that neither RNN-LM nor the
state-of-the-art Gated Attention reader (in a search-and-read
setting) obtains more than 70% of human performance. The
37k cloze questions are constructed from the definitions of
SO tags by replacing occurrences of software entities with
blank . The SO tag being defined in question q becomes the

context entity cq . The background corpus consists of 27M
sentences from the top 50 question and answer threads for
each of 4,874 software entities. Each post d is tagged with 1-
5 tags which become the document context c. Figure 1 shows
an example question and relevant background sentences.

STACKEX1 To test how CASE performs in settings with
less background data, we construct three new QA datasets
analogous to QUASAR-S. Following the methodology of
Dhingra, Mazaitis, and Cohen (2017), we extract questions
and post excerpts from Math Exchange, TeX Exchange, and
English Exchange. Each site contains definitions of entity
tags in the corresponding domain as well as tagged posts
(see Figure 2). As for QUASAR-S, we construct cloze ques-
tions from the tag definitions and use the posts as semi-
structured knowledge training corpora. Since each of these

1Available at [URL in camera-ready]



QUASAR-S SPADES MATHEX TEXEX ENGLISHEX

Training Qns 31,049 190,972* - - -
Val Qns 3,174 4,763 365 317 61
Test Qns 3,139 9,309 389 328 68
Background Exs 17.8 mil† - 123,179 158,624 58,077
Context Entities 44,375 53,961 1600 1542 939
Answer Entities 4,875 53,961‡ 320 242 61

Table 1: Statistics of QUASAR-S, STACKEX, and SPADES. *Each entity in the 79,247 original training questions is replaced to produce a
new training question; †Each entity in the 26.6 mil. SO posts is replaced to produce a training example; ‡While 1.8 million entities are present
in the SPADES Freebase extract, we restrict prediction to entities appearing in the training questions.

Question q : Google acquired which
was founded in Palo Alto

Context entities cq : Google, Palo Alto
Answer entity a : Nest

Figure 3: Example question from SPADES

Stack Exchange sites defines only a few hundred tags, we
split questions evenly into validation and test sets and do not
hold out a training question set.

SPADES (Bisk et al. 2016) A set of 93k cloze-style ques-
tions constructed from sentences from ClueWeb09 which
have been automatically annotated with Freebase entities by
Gabrilovich, Ringgaard, and Subramanya (2013). Specifi-
cally, the sentences in SPADES contain two or more Free-
base entities that are linked by at least one relation path in
Freebase. Das et al. (2017) provide strong memory-network
baselines which leverage both Freebase and training ques-
tions as knowledge sources. Unlike QUASAR-S, there are
no explicit tags present. We therefore take the Freebase en-
tities in each question sentence q (usually one) as the con-
text entities cq . Also, SPADES has no background text cor-
pus S = {(c, d)}. We instead use the training questions as
a small background corpus, considering each question as a
document d and its annotated Freebase entities as the context
entities c. Figure 3 shows an example question.

Experimental Setup
Across all CASE-CC experiments we instantiate LM f as
a BiGRU following the baseline from Dhingra, Mazaitis,
and Cohen (2017). Training is conducted using a learning
rate of 0.001 annealed by 50% after each epoch. We use the
Adam (Kingma and Ba 2014) optimizer with default hy-
perparameters (β1 = 0.9, β2 = 0.999, ε = 1e-8), with
100-dimensional sentence word embeddings pretrained us-
ing skip-gram word2vec (Mikolov and Zweig 2012). For
context model g we use co-occurrence counts as described
above. The BiGRU is trained with the co-occurrence counts
model present.2

QUASAR-S and STACKEX While the goal is to predict
answers on the question set constructed from tag definitions,

2Source code is available at [URL in camera-ready].

we first train on the much larger post corpus. We create a
training example for each occurrence of an answer entity
in a post by replacing that entity with blank and treating
it as the answer. We use the post tags as the context enti-
ties c. For QUASAR-S, since the model is trained on posts
and evaluated on the question set, we fine-tune the model
on the training questions. We follow an approach similar to
that used by Chu, Dabre, and Kurohashi (2017) for neural
translation transfer learning: after training on the large post
corpus until convergence, we then train on a 50/50 mix of
training questions and posts. This procedure avoids overfit-
ting to the much smaller set of training questions. On the
other STACKEX datasets, where no training questions exist,
we train only on the post corpora and do not conduct fine-
tuning.

On QUASAR-S we compare to the baselines reported
in Dhingra, Mazaitis, and Cohen (2017) and to two other
ways of incorporating context (BiGRU-PT, CBiGRU) de-
scribed below in Section 4. On STACKEX we replicate the
LM baselines using code obtained from the author, but omit
the GA reader baseline since this requires a set of training
clozes which are absent form STACKEX. On both datasets
we also compare to the model CC consisting of only the co-
occurrence counts model g, ignoring question sentences.

SPADES We follow the same experimental procedure as
for QUASAR-S and use the training/validation/test split from
Das et al. (2017). We compare to the ONLYTEXT, ONLY-
KB, and UNISCHEMA models of Das et al. (2017). In ad-
dition to CASE-CC, we train hybrid models that add the
co-occurrence counts as a bias to the output softmax of the
ONLYKB and UNISCHEMA models. For these models we
use the code, parameters, and training procedures of UNIS-
CHEMA but train the model with the co-occurrence bias
present. Finally, we compare to a model CC consisting of
the co-occurrence model g only.

Results
QUASAR-S Results and baselines are reported in Table 2.
The fine-tuned CASE-CC obtains an accuracy of 45.2%, a
gain of 11.6% over the best previously reported results of
Dhingra, Mazaitis, and Cohen (2017), obtained by BiGRU
(33.6%). Dhingra, Mazaitis, and Cohen (2017) also report
performance of several search-and-read methods, the best of
which uses the neural gated-attention (GA) reader. When the
answer is present in a retrieved document, the GA reader



Method Val. Acc. Test Acc.

Human Performance

Expert (CB) 0.468 -
Non-Expert (OB) 0.500 -

Language Models

3-gram LM 0.148 0.153
4-gram LM 0.161 0.171
5-gram LM 0.165 0.174
BiGRU LM 0.345 0.336

Search + Read

WD (SD) 0.100 0.107
MF-e (SD) 0.134 0.136
MF-i (SD) 0.159 0.159
GA (SD) 0.315 0.316
WD (LD) 0.082 0.093
MF-e (LD) 0.128 0.136
MF-i (LD) 0.159 0.159
GA (LD) 0.318 0.321

New Models

CC 0.128 0.139
CASE-AE 0.314 0.327
CASE-SE 0.330 0.329
BiGRU-PT-5 0.326 0.335
BiGRU-PT-1 0.336 0.342
C-BiGRU 0.342 0.352
BiGRU + ft 0.385* 0.380*
CASE-CC 0.413* 0.413*
CASE-CC + ft 0.449* 0.452*

Table 2: Performance comparison on QUASAR-S. Results other
than New Models and notation are from Dhingra, Mazaitis, and Co-
hen (2017). ft: fine-tuning on questions; LD: long documents; SD:
short documents; GA: gated-attention reader; MF-i, MF-e, WD:
search-and-read methods using heuristics to extract answer from
retrieved documents; OB: open-book; CB: closed book. *Accuracy
gain over next best is significant at the p < 0.05 level under an ex-
act McNemar’s paired test.

identifies the correct answer 48.3% of the time, but the 65%
search accuracy limits overall accuracy to 31.6%. CASE-
CC nearly matches the accuracy of the GA reader compo-
nent alone. The CASE-CC accuracy approaches that of hu-
man experts in a closed-book setting (46.8%), and is only
4.8% behind that of non-expert humans in an open-book set-
ting (50.0%). Lastly, we find that fine-tuning on questions
improves the performance of both the BiGRU and CASE-
CC by about 5%. We report negative results of the other con-
text models below.

STACKEX As for QUASAR-S, we compare CASE-CC to
LM baselines. Results are reported in Table 4. On MATHEX
and TEXEX, CASE-CC obtains nearly twice the BiGRU ac-
curacy. On ENGLISHEX, where the BiGRU already obtains
47.1% accuracy, CASE-CC obtains +14.7%.

SPADES Results and baselines are reported in Table 3.
CASE-CC, trained only on entity co-occurrences in the

Method Val. Acc. Test Acc.

Text-only Models

BiGRU 0.184 0.190
ONLYTEXT† 0.253 0.266
CC 0.270 0.279
Bisk et al. (2016) 0.327 -
CASE-CC 0.362* 0.358*

Knowledge-base Models

ONLYKB† 0.391 0.385
ENSEMBLE† 0.394 0.386
UNISCHEMA† 0.411 0.399
ONLYKB+CC 0.415* 0.403*
UNISCHEMA+CC 0.427 0.423*

Table 3: Performance comparison on SPADES. †(Das et al. 2017).
*Accuracy gain over next best (or non-CC version for UNIS-
CHEMA and ONLYKB) is significant at the p < 0.05 level under
an exact McNemar’s paired test.

question text, obtained better accuracy (35.8%) than both
the BiGRU (19.9%) and the memory-network ONLYTEXT
model of Das et al. (2017), which creates a knowledge
base using training question text as facts. CASE-CC per-
forms nearly as well as the memory-network ONLYKB
model (38.6%), which uses Freebase facts, or the UNIS-
CHEMA model (39.9%), which uses both text and Freebase
facts. The co-occurrence only model CC obtains a surpris-
ing 27.9% accuracy. Using co-occurrence counts as a bias
in the ONLYKB and UNISCHEMA models improve both by
about 2.5%, with the best model UNISCHEMA+CC obtain-
ing 42.3% accuracy.

Discussion
The strong performance of CASE confirms that QA can take
advantage of semi-structured text corpora in specialized do-
mains where no KB exists. By incorporating co-occurrence
counts, CASE-CC obtains significant accuracy gains across
all five datasets. On SPADES, using only the training ques-
tions as knowledge source, CASE-CC does almost as well
as methods which use Freebase.

CASE outperforms both BiGRU and search-and-read
baselines on QUASAR-S. In the first case, we attribute this
to the fact that CASE effectively incorporates context enti-
ties while BiGRU does not. In addition, the RNN in CASE
can focus more on syntactic/type information, leaving the
context model g to handle context/semantic information;
we explore this further in Section 5. As noted, search-and-
read methods such as the GA reader baseline have trou-
ble combining the search and read components. However,
CASE even approaches accuracy of the GA-reader com-
ponent alone on examples where the correct answer is in
the retrieved context. This is likely due to training data re-
quirements: while CASE was trained directly on the 17
mil. post corpus, GA-reader was trained on only the 30k
training questions, instead using the posts as the source for
querying.

Performance on STACKEX follows a similar trend to



MATHEX TEXEX ENGLISHEX

Method Val. Acc. Test Acc. Val. Acc. Test Acc. Val. Acc. Test Acc.

CC 0.216 0.198 0.290 0.320 0.311 0.279
3-gram LM 0.200 0.162 0.215 0.216 0.426 0.309
4-gram LM 0.216 0.152 0.233 0.228 0.443 0.294
5-gram LM 0.214 0.147 0.233 0.225 0.426 0.309
BiGRU 0.320 0.242 0.404 0.360 0.557 0.471
CASE-CC 0.523* 0.452* 0.574* 0.622* 0.721* 0.618*

Table 4: Performance comparison on STACKEX datasets. *Accuracy gain over next best is significant at the p < 0.05 level under an exact
McNemar’s paired test.

Question CASE-CC BiGRU from CASE CC

antivirus software is software used to
prevent detect and remove malware

malware, antivirus,
heuristics

duplicates, malware,
scrollbars

antivirus, malware,
server

fps is a measure of frame-rate the rate
at which ...

frame-rate, cpu, video data-transfer, execution-
time, frame-rate

video, frame-rate, cpu

ffserver is a streaming server for both
audio and video

server, video, codec endpoint, connection
-manager, interface

ffmpeg, video, server

Table 5: QUASAR-S examples where CASE-CC gets the correct answer but BiGRU baseline does not. Context entities are shown in bold,
answer entities underlined. Ranked predictions are show for CASE-CC and for it’s BiGRU and CC components, neither of which make
correct predictions individually.

QUASAR-S. STACKEX datasets appear easier overall, which
we attribute to the number of candidate answer enti-
ties (4,875 for QUASAR-S vs 320, 242, and 61 for the
STACKEX datasets). However, the small training sets and
lack of training questions (training only uses posts) work in
the opposite direction, making these datasets harder.

We find that both the BiGRU and co-occurrence com-
ponents of CASE are required for good performance. Ta-
ble 5 shows examples that CASE gets right but the Bi-
GRU baseline gets wrong. Ranked predictions of both LM
and CC components of CASE are shown, indicating that
neither component alone obtains correct answers. The rela-
tive importance of each component varies between datasets.
On SPADES, where the training set is much smaller than
QUASAR-S, the LM contributes +7.9% accuracy over the
CC-only baseline, compared with +31.3% on QUASAR-S.
When comparing CC-only to the BiGRU-only baseline, the
BiGRU outperforms CC on QUASAR-S (13.9% and 33.6%
accuracy, respectively), but the opposite is found on SPADES
(27.9% vs 19.0%). BiGRU performance can be attributed to
the difference in training data size (17.8 mil for QUASAR-
S vs 190,972 for SPADES). Also, CC performs surprisingly
well on SPADES, perhaps because the restriction to sen-
tences that correspond to some Freebase relation, together
with the fact that the sentences are drawn from a broad
corpus with much factual redundancy, results in many re-
peated entity pairs: for example, given context entity Barack
Obama, the answer is United States in 38% of examples.

Negative Results
Neither of the two other entity context models for g, CASE-
AE and CASE-SE, showed improvement over the BiGRU

baseline (Table 2). In both cases, the model had difficulty
learning context entity embeddings. We hypothesize that
this is due in part to the highly non-uniform frequency of
tags in the posts corpus, compared with the uniform dis-
tribution of tags in the test questions which come from
definitions. This does not present a problem for the co-
occurrence counts model, which captures the relationship
between context and answer entities without learning em-
beddings. Weighting training loss by inverse tag frequency
may correct for this and is the subject of future work.

We also experimented with other ways of incorporating
context beyond the CASE framework. CBiGRU is similar
to CLSTM (Ghosh et al. 2016). Instead of inputting em-
bedding W1wi to the BiGRU, we input [Wc W1wi] where
Wc is an embedding for a tag entity c. BiGRU-PT extends
each training sentence by prepending either 1 or up to 5
context entities to the beginning of each training sentence,
potentially allowing the BiGRU to condition it’s computa-
tion based on this context. We found that these methods
of incorporating context did not improve over BiGRU (Ta-
ble 2). As with CASE-AE and CASE-SE, CBiGRU could
not learn good context entity embeddings. That BiGRU-PT
did not improve performance matches our intuition, since
RNNs have trouble remembering context from the begin-
ning of a sequence.

5 Analysis of Embeddings
We observe that by modeling context and question sentence
separately, CASE factors entity representations into a se-
mantic/contextual component given by context and a syn-
tactic/type component given by the sentence. To assess the
extent of this property we analyze the output entity embed-



Seed CASE-CC BiGRU

ipod ipod-touch, ipad, apple-tv ipad, itunes, 3g
xcode eclipse, visual-studio, xamarin-studio cocoapods, gdb, rubymine
intellij-idea netbeans, phpstorm, eclipse spring-mvc, java-ee, rubymine
unit-testing debugging, profiling, refactoring integration-testing, tdd, dependency-injection
linear-regression logistic-regression, random-forest, least-squares logistic-regression, machine-learning, time-series

Table 6: NNs in the CASE-CC and BiGRU output embedding space. Entities of the same type as seed are underlined.

dings learned by CASE-CC. To obtain (noisy) ground-truth
types for SO entities, we link entities to Wikidata (Vrandečić
and Krötzsch 2014) via the links to Wikipedia in Stack Over-
flow tag definitions. We choose 20 groups of entities such as
Programming Languages and Network Protocols. SPADES
types are obtained from Freebase.

To compare CASE-CC output embeddings to those of
the BiGRU baseline, we use each to predict type using 1-
nearest-neighbor with cosine distance. Consistent with our
expectations, CASE-CC embeddings obtain better accuracy
(QUASAR-S: 63.3%, SPADES: 77.9%) than those of Bi-
GRU (QUASAR-S: 57.4%, SPADES: 71.3%). Qualitatively,
we also observe many instances in which the nearest neigh-
bors in CASE-CC embedding space are of the same type
(e.g both Java IDEs) while nearest neighbors in BiGRU em-
bedding space may be only semantically related (e.g. a Java
IDE and a Java web framework) (Table 6).

6 Related Work

Question Answering

Memory networks have proven effective for reasoning over
KBs, documents, or jointly over both (Das et al. 2017;
Miller et al. 2016; Bordes et al. 2015). While no KBs are
available for our task, we do compare to the text-only mem-
ory network baseline of Bordes et al. (2015) on SPADES.
Recently, the incompleteness of even the largest KBs (Dong
et al. 2014) has motivated QA using unstructured text cor-
pora such as Wikipedia instead of a KB. These text-based
approaches often follow the search-and-read paradigm, in-
volving a search stage, in which relevant documents are re-
trieved, and a reading stage, in which retrieved passages
are read for the correct answer (Chen et al. 2017; Dhin-
gra, Mazaitis, and Cohen 2017; Wang et al. 2017b). Much
research has focused primarily on the reading stage (e.g.
Choi et al.; Cui et al.; Dhingra et al.; Kadlec et al.; Seo
et al.; Wang and Jiang; Xiong, Zhong, and Socher (2016;
2016; 2016; 2016; 2016; 2016; 2016)), with many datasets
developed for the reading comprehension task (e.g. Joshi et
al.; Nguyen et al.; Rajpurkar et al.; Hermann et al. (2017;
2016; 2016; 2015)). The search-and-read approach is con-
ceivably applicable to the QA with context entities task, but
was shown to perform poorly on QUASAR-S; to answer the
domain-specific questions in this task, trading off between
query recall and reading accuracy proves difficult (Dhingra,
Mazaitis, and Cohen 2017), and RNN-LM performs best.

Language Modeling

RNN-based language models have shown increasingly good
performance (see Chung et al. (2014) for a comparison).
However, RNN-LMs have trouble modeling long-range con-
text as well as predicting rare words (Ahn et al. 2016; Gul-
cehre et al. 2016). We find that explicitly incorporating pre-
dictions based on context entities is critical for the QA-with-
context task, since the correct answer entity can be largely
dictated by these. When a KB is present, recent RNN-LMs
(Ahn et al. 2016; Yang and Mitchell 2017) address these is-
sues by selectively incorporating KB facts. Where no KB is
present, several approaches for incorporating more general
long-range context in RNN-LMs have also emerged. Fol-
lowing the terminology of Wang and Cho (2015), these ap-
proaches either employ early-fusion, in which a context vec-
tor is concatenated with each RNN input (Ghosh et al. 2016;
Mikolov and Zweig 2012), or late fusion, in which a context
vector is used as a bias before the output nonlinearity of the
RNN-LM (Lau, Baldwin, and Cohn 2017; Dieng et al. 2016;
Wang and Cho 2015). We compare to one baseline inspired
by the early-fusion method CLSTM (Ghosh et al. 2016)).
The CASE model is an instance of late-fusion, adding a bias
to the RNN output in logit space, prior to softmax. However,
it differs from existing models in that the bias is computed
based on context entities, rather than topics inferred from the
document. Our incorporation of co-occurrence counts with
an RNN-LM is related to the hybrid neural/n-gram LMs of
Neubig and Dyer (2016), but here again the n-gram models
are not based on context entities.

7 Conclusions and Future Work

In this paper, we demonstrated that semi-structured back-
ground data can be used to obtain large performance im-
provements on several cloze QA datasets. The hybrid of a
LM and a simple entity co-occurrence model is both ef-
fective and easy to implement. CASE shows potential for
domain-specific QA tasks such as QUASAR-S, where rele-
vant KBs are not available and search-and-read systems face
difficulties. We also see potential to incorporate other data
sources into the context entity model, such as HTML web
tables. In addition, using more expressive models of context
may improve performance. Finally, we showed that CASE
embeddings encode type/syntax information. The applica-
tion of these embeddings to other tasks warrants further in-
vestigation.
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